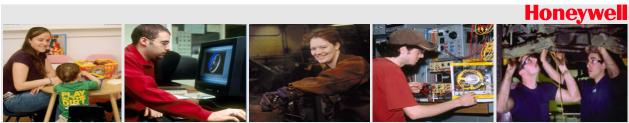


Energy Audit Report

Energy Performance Contracting Services

Presented To:

Northern Maine Community College



March, 2009

Submitted By:

Jim Lucy Mike Hastings, PE CEM LEED AP

> Honeywell 501 County Road Westbrook, ME 04092 800/949-2758

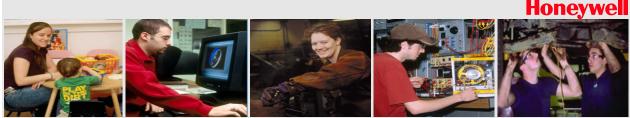
Table of Contents

Section One – Executive Summary

1.0	Introduction	1											
Sec	tion Two – Survey Findings												
2.0	Introduction	5											
2.1	Christie Complex												
	2.1.1 General Building Conditions and HVAC System Descriptions	9 12											
2.2	Mailman Trades												
	2.2.1 General Building Conditions and HVAC System Descriptions2.2.2 Utility Baseline Summary	13 14											
2.3	Residential Buildings	17											
	2.3.1 General Building Conditions and HVAC System Descriptions	17											
2.4	Shop Buildings	21											
	2.4.1 General Building Conditions and HVAC System Descriptions	21											

Section Three – Energy Conservation Measure Descriptions

3.0	Recommended Energy Conservation Measures	23
	3.0.1 ECM-1: Lighting and Lighting Controls Upgrade	23
	3.0.2 ECM-2: Building Infiltration Reductions Upgrades	
	3.0.3 ECM-3: Control Upgrades	
	3.0.4 ECM-4: Ventilation Upgrades	28
	3.0.5 ECM-5: Fuel Oil Heaters	29
	3.0.7 ECM-6: Heat Exchanger Insulation	30
	3.0.8 ECM-7: Boiler Isolation Valves	
	3.0.9 ECM-8: Wind Turbine	31
	3.0.10 ECM-9: Wood Chip Heating Plant	32
3.1	Non-Energy Recommendations (NERs)	35
	3.1.1 NER-1 Aging and Past Useful Life Equipment Replacement	35
	3.1.2 NER-2: Modify/Upgrade Combustion Air Control	
	3.1.3 NER-3: Improve Heating Water Distribution	
	3.1.4 NER-4: Repair / modify boiler / furnace exhaust in Plumbing and Heating	
	3.1.5 NER-5: Replace Welding Lab Dust Collection and Make-up Air System	
3.2	Reviewed and Not Recommended (RNRs)	41
	3.2.1 RNR-1: Pump Variable Frequency Speed Drives (VFDs)	41
	3.2.2 RNR-2: HRU Demand Control Ventilation	
	3.2.3 RNR-3: Geothermal Heating	42



Section Four – Measurement and Verification

4.0	Overview	43
4.1	ECM Specific M&V Plan Samples	47
	4.1.1 ECM 1, ECM 8	47
	4.1.2 ECM 2, ECM 5, ECM 7	48
	4.1.3 ECM 3, ECM 4, ECM 6, ECM 9	49

Section Five – Appendices

5.0	Appendices	51
	Appendix A – Lighting Room by Room Detail	
	Appendix B – Temperature Logger Data	
	Appendix C – On-Time Logger Data	
	Appendix D – Preliminary Utility Analysis	
	Appendix E – Energy Calculations	

Executive Summary Section One

1.0 Introduction

Honeywell is pleased to submit our preliminary proposal for comprehensive energy efficiency and HVAC upgrades throughout the Northern Maine Community College campus. The proposal is intended to provide an overview of our recommendations to reduce and contain energy costs throughout the college buildings. In addition, it was developed to outline additional "non-energy saving" improvements designed to provide a more comfortable and healthy learning environment, and to address ongoing deferred maintenance needs.

Background

In order to reduce energy consumption and address deficiencies in its buildings, Northern Maine Community College and Honeywell agreed to explore the potential to use Energy Savings Performance Contracting as a vehicle to reduce energy costs and fund necessary improvements. The philosophy behind this analysis is to identify improvements that can be paid for by utilizing energy and operational savings and Utility Rebates. Our solution provides a means to upgrade your facilities and improve conditions, without any additions to your budget.

The measures identified in this energy audit report fulfill the College's needs by providing needed facility improvements, improved building comfort, and energy and operational cost reductions. Each of the proposed project options maximizes the improvements that can be paid through savings and utility rebates.

In our discussions with College representatives, we identified several primary needs that will be addressed in Honeywell's proposed solutions. The primary needs that we identified are:

- **Reduce Operating Costs** The first priority is to implement a project that makes economic sense for the College by reducing operating costs, and creating a savings/revenue stream that will pay for the project.
- Improve the Comfort of the Occupants Some of the current building HVAC systems are not operating properly. Some comfort and ventilation deficiencies exist in the buildings. In some cases, it is due to antiquated equipment, in others it is existing systems not operating properly or not being designed to current building code standards. This proposal provides options to address these issues by updating HVAC equipment, building control systems and maintenance best practices. Additional options can be developed at the request of the College.
- Address Aging Equipment Our discussions with College personnel, as well as our physical examination of the facilities, identified a number of the buildings with equipment that are beyond or approaching their useful service life. As outlined in our report and proposal options, Honeywell has developed a comprehensive plan and cost effective payment methods to help the College address these capital needs.

Northern Maine Community College Energy Audit Report

Honeywell would like to extend its sincere thanks to all Northern Maine Community College personnel who assisted with the development of this report.

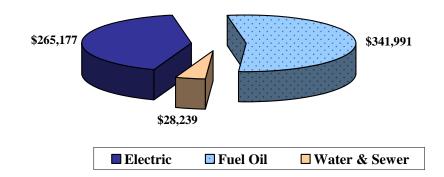
Baseline Energy History

Honeywell studied and analyzed a two year history of the buildings' electrical, fuel oil, propane and water and sewer consumption. The baseline period selected for the utilities affected by the energy measures included in this report are as follows:

Base Year Period	Electric	Fuel Oil
All Buildings	July 2006 to June 2008	July 2006 to June 2008

Current Utility Rates

Utility information provided by NMCC and the utility providers included consumption data for Electric, Fuel Oil, Water and Sewer. The usage per building was taken directly from the utility billing information. The following is a summary of the utility costs, energy type and units by building that were utilized in our energy savings calculations.


Utility Analysis Period: FY08 vs. FY07

	Curr	ent Year (l	F Y08)	Prior Year (FY07)					
			Water &			Water &			
	Electric	Fuel Oil	Sewer	Electric	Fuel Oil	Sewer			
Utility Costs*	\$265,177	\$341,991	\$28,239	\$247,463	\$266,912				
Utility Usage (kWh, Gal, Cu.ft.)	1,805,600	120,817	441,100	2,002,800	130,544				
\$ Cost/Unit (kWh, Gal, Cu.ft.)	\$0.1469	\$2.83	\$0.06	\$0.1236	\$2.04				
Electric Demand (kW)	5,206			5,706					

* Costs include energy and demand components, as well as taxes, surcharges, etc.

Note: The above utility data applies to the entire campus. The water & sewer data does not include the fire costs of \$3,442 per year.

Actual Cost by Utility - FY08

Utility Rates

Utility information provided included consumption data for electric and #2 fuel oil. The use per building for #2 fuel oil was taken directly from the utility billing information. The fuel oil (No. 2 oil) price used in the analysis was \$3.00 per gallon. The actual electric utility cost data averages were used over the Base Year period for each building individually. Future consumption of all utilities was based on averages of the Base Year period consumptions.

Information for this study was primarily obtained during site visits, review of construction drawings, interviews with building personnel, equipment nameplate data, utility data, and equipment measurements. Operating information was obtained from data collected during the survey, data logger results as outlined in the appendix and dialogues with building staff.

Scope of Work Overview

This report describes improvements identified during the energy audit phase to increase energy efficiency, building comfort, and address deficiencies associated with the energy infrastructure in the Northern Maine Community College facilities. Section 3 provides a description of the Energy Conservation Measures (ECMs) and Non-Energy Recommendations (NERs) that have been identified and recommended for implementation.

The various options and associated symbol descriptions are:

- 15-Year
- 15-Year Capital Improvement (includes all measures described in this report)

Measurement and Verification – Guaranteed Performance

Honeywell proposes a cost-effective plan for Measurement and Verification (M&V) to ensure that the guaranteed savings are realized over the contract term. Our proposed approach strikes a balance between the cost of M&V, and the level of information required to substantiate our savings guarantee and performance.

Prior to construction, Honeywell will establish baseline efficiencies and operational parameters. Parameters that are beyond Honeywell's control, such as operating hours, energy rates, and others, will be agreed upon between Honeywell and the College, and stipulated for the term of the contract. After construction is completed, Honeywell will conduct post-installation measurements in accordance with the M&V Plan. Actual savings will then be determined from the baseline measurements, post-installation measurements, and agreed-upon stipulated parameters. In the event that actual savings are less than the guaranteed savings, Honeywell will take steps to identify and implement, at its cost, the necessary improvements to generate sufficient savings, or pay the College the difference between the actual and guaranteed savings. Finally, on an annual basis, Honeywell will conduct site surveys and measurements to confirm that the efficiency and operating conditions for each energy conservation measure are maintained. A more detailed description of our M&V approach is described in Section 4 of this report. A specific cost for the M&V services will be established once a final project scope of work is determined.

Financial Summary

Honeywell's preliminary financial analysis focused on all of the recommended improvements described in Section 3. Consistent with the terms and conditions of the Letter of Intent agreement, Honeywell has developed a 15-year self-funded project option for consideration. We have also developed a 15-year capital improvement option that includes all improvements recommended in Section 3 of this report.

The following financial analysis summarizes the impact on the College's budget, for each of the options on a fiscal year basis over a 20-year period. Several assumptions have been made in putting these projections together. These assumptions include:

- 15-year financing at a fixed 5.25% interest rate, Energy inflation rate of 3.5%
- Debt service payments increase at a fixed 3.5% per year over the finance term
- No significant changes from the energy baseline conditions in each building for hours of operation, equipment use, weather conditions and utility rates
- Maine Public Service rebates in the amount of \$12,105

Please note, that the financial summaries do not include costs for the removal or remediation of lead based paint or asbestos containing materials. The removal or remediation of lead based paint and/or asbestos containing materials will be the responsibility of the College, and is separate from all scope descriptions and costs herein. The table below summarizes the financial impacts of implementing Honeywell's recommendations:

15 Year Option:

Project Cost	\$861,468
Utility Rebate	\$12,105
1 st Year Savings	\$68,245
1st Vege Appuel Lease Durchase Dayment	\$67.706
1st Year Annual Lease Purchase Payment	\$67,796
1st Year Annual Lease Purchase Payment Cumulative Cash Flow over 15 Years	\$67,796 \$74,432

15 Year Capital Improvement Option:

Project Cost	\$5,301,540
Utility Rebate	\$12,105
1 st Year Savings	\$151,016
1st Annual Lease Purchase Payment	\$417,221
1 st Annual Lease Purchase Payment Cumulative Cash Flow over 15 Years	\$417,221 (\$4,180,945)

The following pages provide a financial summary that displays a detailed year by year breakout of the financial impacts of the project options.

15 Year Project

Honeywell

NORTHERN MAINE COMMUNITY COLLEGE PERFORMANCE CONTRACTING PROJECT 20 YEAR PRELIMINARY FINANCIAL ANALYSIS FINANCIAL INSTRUMENT - 15 YEAR LEASE PURCHASE AGREEMENT

	Project Cost Amount Financed Interest Rate Term		Amount Financed Interest Rate Term		ount Financed Amount Finan rest Rate Interest Rate		Amount Financed Interest Rate		Amount Financed Interest Rate		\$861,468 \$861,468 5.25% 15		<u>Inflation Rate</u> Energy Project Finar		3.5% 3.5%												
Fiscal Year	-	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	TOTAL						
Energy Savings		\$73,512	\$76,085	\$78,748	\$81,504	\$84,357	\$87,309	\$90,365	\$93,528	\$96,801	\$100,189	\$103,696	\$107,325	\$111,082	\$114,969	\$118,993	\$123,158	\$127,469	\$131,930	\$136,548	\$2,008,593						
Utility Rebate	\$12,105																				\$12,105						
Operational TOTAL UTILITY & OPERATIONAL																											
SAVINGS	\$83,131	\$73,512	\$76,085	\$78,748	\$81,504	\$84,357	\$87,309	\$90,365	\$93,528	\$96,801	\$100,189	\$103,696	\$107,325	\$111,082	\$114,969	\$118,993	\$123,158	\$127,469	\$131,930	\$136,548	\$2,020,698						
Project Costs																											
Project Financing	\$67,796	\$70,169	\$72,625	\$75,167	\$77,797	\$80,520	\$83,338	\$86,255	\$89,274	\$92,399	\$95,633	\$98,980	\$102,444	\$106,030	\$109,741						\$1,308,168						
Measurement & Verification	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD												
Cost to Ventilate	\$2,781	\$2,878	\$2,979	\$3,083	\$3,191	\$3,303	\$3,419	\$3,538	\$3,662	\$3,790	\$3,923	\$4,060	\$4,202	\$4,349	\$4,502	\$4,659	\$4,822	\$4,991	\$5,166	\$5,346	\$78,646						
TOTAL COSTS	\$67,796	\$70,169	\$72,625	\$75,167	\$77,797	\$80,520	\$83,338	\$86,255	\$89,274	\$92,399	\$95,633	\$98,980	\$102,444	\$106,030	\$109,741						\$1,308,168						
NET ANNUAL BUDGET IMPACT	\$15,335	\$3,343	\$3,460	\$3,581	\$3,707	\$3,836	\$3,971	\$4,110	\$4,253	\$4,402	\$4,556	\$4,716	\$4,881	\$5,052	\$5,229	\$118,993	\$123,158	\$127,469	\$131,930	\$136,548	\$712,530						
CUMMULATIVE CASH FLOW	\$15,335	\$18,678	\$22,138	\$25,720	\$29,426	\$33,263	\$37,233	\$41,343	\$45,596	\$49,999	\$54,555	\$59,271	\$64,152	\$69,204	\$74,432	\$193,425	\$316,583	\$444,052	\$575,982	\$712,530	\$712,530						

15 Year Capital Improvement Option (Full Project)

Honeywell

NORTHERN MAINE COMMUNITY COLLEGE PERFORMANCE CONTRACTING PROJECT 20 YEAR PRELIMINARY FINANCIAL ANALYSIS FINANCIAL INSTRUMENT - 15 YEAR LEASE PURCHASE AGREEMENT

	Project Cost Amount Financed Interest Rate Term		Amount Financed Interest Rate		Project Cost Amount Fina Interest Rate Term	nced	\$5,301,540 \$5,301,540 5.25% 15		<u>Inflation Rate</u> Energy Project Finan		3.5% 3.5%												
Fiscal Year	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	TOTAL		
Energy Savings Utility Rebate		\$206,913	\$214,155	\$221,650	\$229,408	\$237,437	\$245,748	\$254,349	\$263,251	\$272,465	\$282,001	\$291,871	\$302,087	\$312,660	\$323,603	\$334,929	\$346,652	\$358,784	\$371,342	\$384,339	\$5,653,561 \$12,105		
Operationa																					Ļ		
TOTAL UTILITY & OPERATIONAL SAVINGS	\$212,021	\$206,913	\$214,155	\$221,650	\$229,408	\$237,437	\$245,748	\$254,349	\$263,251	\$272,465	\$282,001	\$291,871	\$302,087	\$312,660	\$323,603	\$334,929	\$346,652	\$358,784	\$371,342	\$384,339	\$5,665,666		
Project Costs																							
Project Financing	\$417,221	\$431,824	\$446,938	\$462,581	\$478,771	\$495,528	\$512,871	\$530,822	\$549,401	\$568,630	\$588,532	\$609,130	\$630,450	\$652,516	\$675,354						\$8,050,566		
Measurement & Verification	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD								
Cost to Ventilate	\$48,900	\$50,612	\$52,383	\$54,216	\$56,114	\$58,078	\$60,111	\$62,214	\$64,392	\$66,646	\$68,978	\$71,393	\$73,891	\$76,477	\$79,154	\$81,925	\$84,792	\$87,760	\$90,831	\$94,010	\$1,382,876		
TOTAL COSTS	\$417,221	\$431,824	\$446,938	\$462,581	\$478,771	\$495,528	\$512,871	\$530,822	\$549,401	\$568,630	\$588,532	\$609,130	\$630,450	\$652,516	\$675,354						\$8,050,566		
NET ANNUAL BUDGET IMPACT	(\$205,200)	(\$224,911)	(\$232,783)	(\$240,930)	(\$249,363)	(\$258,090)	(\$267,123)	(\$276,473)	(\$286,149)	(\$296,165)	(\$306,530)	(\$317,259)	(\$328,363)	(\$339,856)	(\$351,751)	\$334,929	\$346,652	\$358,784	\$371,342	\$384,339	(\$2,384,900)		
CUMMULATIVE CASH FLOW	(\$205,200)	(\$430,111)	(\$662,894)	(\$903,824)	(\$1,153,186)	(\$1,411,277)	(\$1,678,400)	(\$1,954,873)	(\$2,241,022)	(\$2,537,187)	(\$2,843,717)	(\$3,160,976)	(\$3,489,339)	(\$3,829,195)	(\$4,180,945)	(\$3,846,016)	(\$3,499,365)	(\$3,140,580)	(\$2,769,239)	(\$2,384,900)	(\$2,384,900)		

* Utility Rebates - Are projected at this time and subject to final approval.

* Operational Savings - Have not been included in the cash flow.

* Guaranteed Savings Measurement and Verification (M&V) Annual Costs - Poject cash flow currently does not account for annual M&V costs.

Survey Findings Section Two

2.0 Introduction

<u>Purpose</u>

As part of an energy performance contract, Honeywell has performed an energy audit for Northern Maine Community College. The following report details survey findings and recommendations, along with a summary of energy saving strategies and recommended upgrades as part of a Guaranteed Energy Savings Contract.

Surveys were conducted in the following facilities:

Building	Square Footage
Christie Complex	125,541
Mailman Trades Building	44,734
Residential Buildings	68,894
Shop Buildings	15,242
Total	214,150

Information for this study was primarily obtained during site visits to the facilities, onsite observations, interviews with facility personnel, equipment nameplate data, available utility data, and equipment measurements. Operating information was obtained from data collected during the survey and dialogues with facility staff.

Baseline Operating Parameters

Following are the facilities and systems operations measured and/or observed during the investigation period. The data summarized will be used in the calculations of the baseline energy consumption and/or demand, and for calculating baseline adjustments for changes in facility operation that occur during the Guarantee Period. Honeywell and Northern Maine Community College agree that the operating parameters specified in this section are representative of equipment operating characteristics during the Base Year specified as the average of the July 2006 to June 2008 utility expenditures. The following data was collected with the assistance of Northern Maine Community College personnel.

NORTHERN MAINE COMMUNITY COLLEGE EXISTING SCHEDULES & TEMPERATURE SETPOINTS

NMCC - EXISTING SCHEDULES & TEMPERATURE SETPOINTS

Baseline operating parameters are the facility(s) and system(s) operations measured and/or observed before commencement of the Work. The data summarized will be used in the calculations of the baseline energy consumption and/or demand and for calculating baseline adjustments for changes in facility operation that occur during the Guarantee Period. HONEYWELL and CUSTOMER agree that the operating parameters specified are representative of equipment operating characteristics during the Base Year specified in the Agreement. The following data was collected with the assistance of the Facilities Manager and various building personnel and data logging equipment. Results of data logging equipment are attached hereto, and incoporated herein by reference, as Exhibit G2.

				C	ccupied Sche	edule		Unoccupied/Holiday & Vacations Schedule (See note #2)									
Equipment Designation			Days	Begin	End	Setpoint	OA Intake	Days	Begin	End	Days	On/Off	Setpoint				
Christie Com	plex								1	1	1	1					
RTU-1	Library	1	M-F	8:00	16:00	70 deg F	50%	M-F	16:00	8:00	S-S	On schedule	60 deg F				
RTU-2	Conference Center	1	M-F	6:00	18:00	72 deg F	20%	M-F	18:00	6:00	S-S	Off	66 deg F				
RTU-3	Continuing Ed	1	M-F	7:00	16:00	73 deg F	50%	M-F	16:00	7:00	S-S	Off	67 deg F				
HV-1	Womens Locker Room	1	M-F	5:00	16:00	72 deg F	10%	M-F	16:00	5:00	S-S	Off	66 deg F				
HV-2	Mens Locker Room	1	M-F	5:00	16:00	72 deg F	80%	M-F	16:00	5:00	S-S	Off	66 deg F				
AHU-3+4	Gymnasium	2	M-F	6:00	17:00	67 deg F	15%	M-F	17:00	6:00	s-s	Off	62 deg F				
HV-4	Learning Center	1	M-F	0:01	14:00	70 deg F	0%	M-F	14:00	0:01	s-s	Off	68 deg F				
HV-6	Nursing	1	M-F	7:00	17:30	75 deg F	0%	M-F	17:30	7:00	S-S	Off	65 deg F				
HV-7	2nd Floor Offices and Hallway	1	M-F	7:00	21:30	72 deg F	0%	M-F	21:30	7:00	S-S	Off	60 deg F				
HV-8	Classrooms 201-203	1	M-F	7:00	21:30	70 deg F	15%	M-F	21:30	7:00	S-S	Off	60 deg F				
HV-9	Racketball Court	1	M-F	12:00	12:01	60 deg F	0%	M-F	12:01	12:00	S-S	Off	60 deg F				
HV-10	Lecture Hall	1	M-F	6:00	16:30	72 deg F	5%	M-F	16:30	6:00	S-S	Off	66 deg F				
HV-110	Room 110	1	M-F	4:00	20:00	70 deg F	0%	M-F	20:00	4:00	S-S	Off	60 deg F				
HV-111	Room 111	1	M-F	8:00	16:00	70 deg F	10%	M-F	16:00	8:00	S-S	Off	60 deg F				
HV-112	Room 112	1	M-F	6:00	16:00	72 deg F	0%	M-F	16:00	6:00	s-s	Off	66 deg F				
TAB-108B	Room 108B	1	M-F	12:00	12:01	72 deg F	5%	M-F	12:01	12:00	S-S	Off	66 deg F				
TAB-113	Room 113	1	M-F	7:00	20:00	72 deg F	5%	M-F	20:00	7:00	S-S	Off	66 deg F				
TAB-114	Room 114	1	M-F	6:00	20:00	70 deg F	5%	M-F	20:00	6:00	S-S	Off	65 deg F				
TAB-115	Room 115	1	M-F	7:00	20:00	72 deg F	5%	M-F	20:00	7:00	S-S	Off	66 deg F				
TAB-214	Room 214	1	M-F	6:00	16:00	67 deg F	5%	M-F	16:00	6:00	S-S	Off	60 deg F				
HRU-1	Martin Building	1	M-F	0:01	23:59	68 deg F	0%	M-F	23:59	0:01	S-S	Off	65 deg F				
UV-1-3	2nd Floor Science Classroom	3	M-F	7:30	16:00	72 deg F	10%	M-F	16:00	7:30	S-S	Off	66 deg F				
UV-4	Computer Lab 208	1	M-F	7:00	20:00	72 deg F	0%	M-F	20:00	7:00	S-S	Off	66 deg F				
UV-5	Metal Fabrication	1	M-F	6:00	16:30	72 deg F	0%	M-F	16:30	6:00	S-S	Off	66 deg F				
TAB-A	Metal Fab Classroom	1	M-F	12:00	12:01	72 deg F	5%	M-F	12:01	12:00	S-S	Off	66 deg F				
FC-1-18	Central Offices and Classrooms	18	M-F	7:00	20:00	72 deg F	0%	M-F	20:00	7:00	s-s	Off	66 deg F				
FC-19	Student Services Offices	1	M-F	7:00	16:00	72 deg F	15%	M-F	16:00	7:00	s-s	Off	66 deg F				
Liebert-1+2	Computer Labs 209+210	2	M-F	7:00	20:00	72 deg F	0%	M-F	20:00	7:00	S-S	Off	66 deg F				

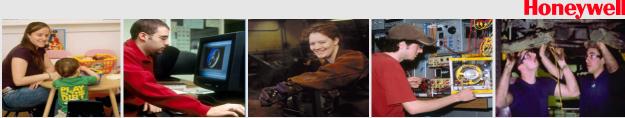
Honeywell

Northern Maine Community College **Energy Audit Report**

NMCC - EXISTING SCHEDULES & TEMPERATURE SETPOINTS

Baseline operating parameters are the facility(s) and system(s) operations measured and/or observed before commencement of the Work. The data summarized will be used in the calculations of the baseline energy consumption and/or demand and for calculating baseline adjustments for changes in facility operation that occur during the Guarantee Period. HONEYWELL and CUSTOMER agree that the operating parameters specified are representative of equipment operating characteristics during the Base Year specified in the Agreement. The following data was collected with the assistance of the Facilties Manager and various building personnel and data logging equipment.

Results of data logging equipment are attached hereto, and incoporated herein by reference, as Exhibit G2.


				C	ccupied Sch	edule			Unoccupied/	Holiday & Vac	ations Sche	dule (See note	#2)
Equipment Designation	Zone / Area Served	Qty.	Days	Begin	End	Setpoint	OA Intake	Days	Begin	End	Days	On/Off	Setpoint
Mailman Trac	des												
UV-1	Diesel Classroom	1	M-F	8:00	12:00	67 deg F	0%	M-F	12:00	8:00	S-S	Off	66 deg F
UV-2+5	Automative Classrooms	2	M-F	8:00	12:00	68 deg F	0%	M-F	12:00	8:00	S-S	Off	62 deg F
UV-3	Plumbing + Heating Classroom	1	M-F	12:00	12:01	68 deg F	0%	M-F	12:01	12:00	S-S	Off	62 deg F
UV-4	Welding Classroom	1	M-F	12:00	12:01	68 deg F	0%	M-F	12:01	12:00	S-S	Off	62 deg F
UV-6+7	Res Const Classrooms	2	M-F	8:00	16:00	68 deg F	0%	M-F	16:00	8:00	S-S	Off	62 deg F
HV-1	Diesel	1	M-F	8:00	16:00	67 deg F	15%	M-F	16:00	8:00	S-S	Off	66 deg F
HV-2	Automative	1	M-F	8:00	16:00	68 deg F	15%	M-F	16:00	8:00	S-S	Off	62 deg F
HV-3	Plumbing + Heating	1	M-F	12:00	12:01	68 deg F	10%	M-F	12:01	12:00	S-S	Off	62 deg F
MAU-1	Welding	1	M-F	12:00	12:01	68 deg F	10%	M-F	12:01	12:00	S-S	Off	62 deg F
UHs	Res Const	2	M-F	5:00	16:00	68 deg F	NA	M-F	16:00	5:00	S-S	Off	62 deg F
Residential	1					1			1				
HV-1	Andrews Common Areas	1	M-F	0:01	23:59	70 deg F	10%	M-F	23:59	0:01	S-S	Off	55 deg F
HV-2	Commons Dining	1	M-F	3:00	21:00	70 deg F	5%	M-F	21:00	3:00	S-S	Off	60 deg F
UV-1	Commons Conference	1	M-F	12:00	12:01	72 deg F	10%	M-F	12:01	12:00	S-S	Off	60 deg F
UV-2	Snow Conference	1	M-F	12:00	12:01	65 deg F	5%	M-F	12:01	12:00	S-S	Off	60 deg F
FT-1	Andrews Hall	1	M-F	0:01	23:59	68 deg F	5%	M-F	23:59	0:01	S-S	Off	55 deg F
FT-2	Aroostook Hall	1	M-F	0:01	23:59	68 deg F	5%	M-F	23:59	0:01	S-S	Off	55 deg F
FT-3	Penobscot Hall	1	M-F	0:01	23:59	68 deg F	5%	M-F	23:59	0:01	S-S	Off	55 deg F
FT-4	Snow Hall	1	M-F	0:01	23:59	68 deg F	5%	M-F	23:59	0:01	S-S	Off	55 deg F
FT-5	Washington Hall	1	M-F	0:01	23:59	68 deg F	5%	M-F	23:59	0:01	S-S	Off	55 deg F
Shops	1					1			1				
FT-1	Autobody	1	M-F	6:00	16:00	68 deg F	10%	M-F	16:00	6:00	S-S	On schedule	52 deg F
Furnace	Maintenance Shop	1	M-F	6:00	16:00	70 deg F	10%	M-F	16:00	6:00	S-S	On schedule	65 deg F
Furnace	Maintenance Garage	1	M-F	6:00	16:00	61 deg F	10%	M-F	16:00	6:00	S-S	On schedule	60 deg F

Notes:

An unoccupied cooling setpoint of 90 Degrees F signifies that air conditioning will be disabled during unoccupied mode.
 Holidays & Vacations: All observed holidays, Christmas Recess, Winter Recess, Spring Recess, Summer Recess.

This Page Intentionally Left Blank

2.1 Christie Complex

Building:

The Christie Complex is made up of several buildings: Edmunds, Martin, Christie, the Gymnasium and Electric Labs, comprising approximately 125,500 square feet. All of these buildings are interconnected by sharing what once were exterior walls. The original portion of Christie is now a

two-story office and classroom building which is the central portion of the complex. The Gymnasium and Electrical Labs extend to the north of the complex. The Martin building houses the main administration of the College, as well as some additional classrooms, and is the only 3-story portion of the complex. Edmunds is the newest addition to the complex, adding а large Library Conference Center and Continuing Education offices and classrooms.

2.1.1 General Building and HVAC System Descriptions:

Heating System:

The building is heated by three HB Smith Mills boilers, #2 Fuel Oil, hot water boilers. The boilers are (1) HB Smith 450 Mills 3,350MBH, (2) HB Smith 450 Mills 2,675MBH and (3) HB Smith 350 Mills 1,795MBH. The burners are Power Flame units (1) C3-OHBS-12, (2) C3-OHBS-10 and (3) O2-OB4HBS-9.

The boiler hot water system operates on a hot water reset schedule. Hot water setpoint is 180°F at 10°F outdoor air temperature, and the setpoint is 140°F at 60°F outdoor air temperature. The enabling outdoor air temperature for the boilers is 60°F.

Building Heating Hot Water Pumps

Two hot water pumps serve the complex 10 HP units. Super-E Baldor motors with 91.7% efficiencies drive the pumps with two VFDs controlling the motor speed based on downstream pressure as a demand control.

One heat exchanger provides domestic hot water to the complex. A storage tank provides domestic hot water storage for the complex for a quick on-demand response.

The heating hot water boilers mentioned above send hot water to various air handlers, rooftop units, unit ventilators, fan coils, baseboard units and unit heaters.

RTU-1 Library Air Handler

Women's Locker Room HV Unit

Air Conditioning Systems:

The Edmunds Building is air conditioned through its three rooftop units. There is also scattered air conditioning in computer labs and financial offices.

Ventilation Systems:

The ventilating systems in the building are as follows:

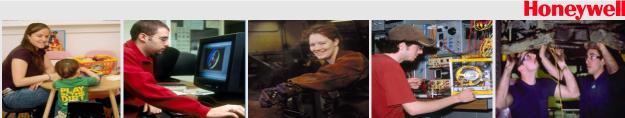
- RTU-1: Modular rooftop air handler that provides fresh air, heating and cooling to the Library.
- RTU-2: Modular rooftop air handler that provides fresh air, heating and cooling to the Conference Center.
- RTU-3: Modular rooftop air handler that provides fresh air, heating and cooling to the Continuing Education offices and classrooms.
- HV-1: Heating and Ventilating unit providing ventilation and heat to the Men's Locker Room.
- HV-2: Heating and Ventilating unit providing ventilation and heat to the Women's Locker Room.
- AHU-3+4: Heating and ventilation units that provide heat, ventilation and air movement for the Gymnasium.
- HV-4: Heating and Ventilating unit providing ventilation and heat to the Learning Center.
- HV-6: Heating and Ventilating unit providing ventilation and heat to the Nursing.
- HV-7: Heating and Ventilating unit providing ventilation and heat to the 2nd floor offices and hallway near Nursing.
- HV-8: Heating and Ventilating unit providing ventilation and heat to the Classrooms 201-203.
- HV-9: Heating and Ventilating unit providing ventilation and heat to the Racquetball Court.
- HV-10: Heating and Ventilating unit providing ventilation and heat to the Lecture Hall.
- HV-110: Heating and Ventilating unit providing ventilation and heat to the Electrical Construction Lab, Room 110.

Northern Maine Community College Energy Audit Report

- HV-111: Heating and Ventilating unit providing ventilation and heat to the Industrial Electrical Lab, Room 111.
- HV-112: Heating and Ventilating unit providing ventilation and heat to the Computer Electronics Lab, Room 112.
- TAB 108B: Terminal Air Balance device providing ventilation to Room 108B.
- TAB 113: Terminal Air Balance device providing ventilation to Room 1113.
- TAB 114: Terminal Air Balance device providing ventilation to Room 114.

Electronics Lab Heating and Ventilating Unit

- TAB 115: Terminal Air Balance device providing ventilation to Room 115.
- TAB 214: Terminal Air Balance device providing ventilation to Room 214.
- HRU-1: Heat Recovery Unit provides ventilation to the whole of Martin building with recovered heat.
- UV-1-3: Unit Ventilators that provide heating and ventilation to the 2nd floor science classrooms.
- UV-4: Unit Ventilator that provides heating and ventilation to the Computer Lab in room 208.
- UV-4: Unit Ventilator that provides heating and ventilation to the Metal Fabrication Lab.
- TAB A: Terminal Air Balance device providing ventilation to the Metal Fabrication Classroom.
- FC-1-18: Fan coil units that were once unit ventilators have had their outside air intakes blocked are now providing heat to the central offices and classrooms of the Christie.
- FC-19: Fan coil unit added with air conditioning to the financial offices on the first floor east side of Christie.
- Liebert-1+2: In the room air conditioning units that provide cooling to rooms 209 and 210.



Old Unit Ventilator Converted to Fan Coil

Most of the heating and ventilating units, as well as the TAB units, are bringing in limited to no ventilation air, where the new RTUs on top of Edmunds are over ventilating the spaces due to control loop issues.

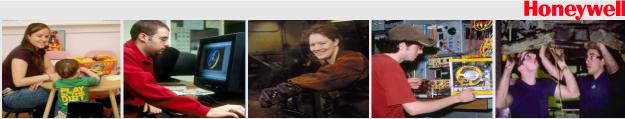
Temperature Control Systems:

Temperature controls are a mixture of various systems throughout the complex. There is some Tridium and Network 8000 for Direct Digital Control (DDC), as well as electronic and pneumatic controls. The building is controlled to an occupancy temperature of 72°F, and sets the temperature back at night to just above 65°F. The schedule for occupancy in the complex varies widely with each space. The facilities management team has been aggressive in their schedule of individual spaces, and does a good job of only having the equipment operating in an occupied mode as the rooms are occupied, using class schedules as a guide for classrooms, labs and lecture areas.

2.1.2 Utility Baseline Summary:

Christie Complex - Utility Services

<u>Electric</u> – Electricity is supplied to the campus by Maine Public Service under a Medium Non-Residential rate. The Account No. is 6420-1-6-71010.


No. 2 Fuel Oil – Oil is delivered to an underground fuel oil tank for the building.

<u>Summary of Energy Use</u> – The table below summarizes the historical baseline utility profile for the complex by energy type, usage, and cost. Fuel consumption is based upon the average of the consumption in the two (2) years, with costs based upon current costs per published rate schedules or negotiated costs.

	Christie Complex							
		Consumption	and Costs			ent Energy		gy %s
T T. '1'.	I.I., to	Consumption	Cost - \$/yr Unit Cost	MMBTUs	\$\$/MMBTU	% of Total	% of Total	
Utility	Units			Cost	/yr	22/MMBIU	Cost	Energy
Electricity	kWh	1,904,200	\$256,320	0.13	6,497	\$ 39.45	59.9%	44.4%
#2 Fuel Oil	Gallons	58,203	\$143,522	2.47	8,148	\$ 17.61	33.5%	55.6%
Water / Sewer	kGallons	3,308	\$ 28,239	8.54	N/A	N/A	6.6%	N/A
Totals			\$ 428,081		14,645		100.0%	100.0%

The baseline for Fuel Oil consumption is based on the average annual usage from July 2006 through June 2008. The Baseline for Electricity recorded here under Christie Complex represents the baseline for the entire campus. The baseline for Electricity usage is based on the average annual usage from July 2006 through June 2008.

The Baseline for Water / Sewer recorded here under Christie Complex represents the baseline for the entire campus.

2.2 Mailman Trades

Building:

The Mailman Trades building houses most of the technical trade classes and hands on labs and work areas. The building provides hands on instruction on the repair of diesel engines, as well as standard

automobiles. There is also a Residential Construction that teaches area general carpentry skills. The Welding and Plumbing and Heating areas also provide the students with the opportunity to learn a service or construction trade. Classrooms also accompany each of the lab/hands-on spaces for specific instruction. The building is approximately 44,700 square feet. Overhead doors service most of the lab areas.

2.2.1 General Building and HVAC System Descriptions:

Heating System:

The building is heated by a single HB Smith 28 Series 9-section hot water boiler, 1,805MBH with a Carlin Burner and Shor-burn oil heater installed. The boiler is approximately 30-years old and beyond its useful life and in need of replacement.

Existing Hot Water Boiler

Mailman Combustion Air

Three 1.5HP hot water pumps serve the building. They all pump into a header which than distributes to the building.

The boiler has a coil for domestic hot water.

Northern Maine Community College Energy Audit Report

The seven classrooms in the building that provide instructional areas for each of the labs and work areas are heated and ventilated with unit ventilators. Unit ventilators are typically used for classroom type ventilation and heating, since they are capable of providing individual control for each room. The Diesel, Auto Body and Plumbing and Heating Labs and work areas are all served by their own heating and ventilating unit. Each of these units is designed to bring outside ventilation air into the space, as well as heat the space under normal conditions. The Diesel and Automotive areas have supplemental heat in the form of unit heaters due to the frequent opening of the overhead doors.

While the Diesel and Automotive heating and ventilating units are working properly, the Plumbing and Heating heating and ventilating unit has not operated in some time. Most of the heat for this space is provide by a couple of unit heaters and the equipment that is used for instruction in the space. The Welding Shop has a large heat recovery system with an integrated make-air unit and exhaust system. Two coils and piping connect these units where heat is taken from the exhaust stream and pumped to the intake air stream to preheat the fresh air. This unit is extremely noisy and does not operate as advertised for the heat recovery. Smokeeters in this space provide the main means for cleaning the dust and fumes that are frequently produced during the welding classes. Residential Construction is only served by unit heaters and has a dust collection system for the main pieces of equipment.

Air Conditioning Systems:

There is no air conditioning in this building.

Ventilation Systems:

See heating systems as the ventilation systems are described above. Smokeeters are also included in the Diesel and Automotive areas to help control fumes and vehicle exhaust.

Temperature Control Systems:

Controls for the heating and ventilating systems are provided by a mix of old Honeywell system electronic controls. The building is controlled to a low occupancy temperature of 68°F and sets the temperature back at night to just above 60°F. Occupied hours for most of the building is 8:00am to 4:00pm.

2.2.2 Utility Baseline Summary:

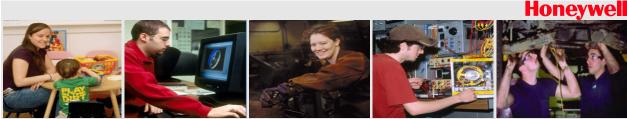
Mailman Trades - Utility Services

<u>Electric</u> – Electricity is main metered for the campus. All data and costs can be viewed under the Christie Complex information.

No. 2 Fuel Oil – Oil is delivered to an underground fuel oil tank for the building.

<u>Summary of Energy Use</u> – The table below summarizes the historical baseline utility profile for the building by energy type, usage, and cost. Fuel consumption is based upon the average of the consumption in the two (2) years with costs based upon current costs per published rate schedules or negotiated costs.

	Mailman Trades							
		Consumption	and Costs			ent Energy		gy %s
Utility	Units	Consumption	Cost - \$/yr	Unit Cost	MMBTUs /yr	\$\$/MMBTU	% of Total Cost	% of Total Energy
#2 Fuel Oil	Gallons	13,854	\$32,914	3.50	1,940	\$ 16.97	100.0%	100.0%
Totals			\$ 32,914		1,940		100.0%	100.0%


The baseline for Fuel Oil consumption is based on the average annual usage from July 2006 through June 2008.

The baseline for Electricity is recorded and documented under the Christie Complex and represents the entire campus. The baseline for Electricity usage is based on the average annual usage from July 2006 through June 2008.

The baseline for Water / Sewer is recorded and documented under the Christie Complex and represents the entire campus.

This Page Intentionally Left Blank

2.3 Residential Buildings

Building:

The Residential Buildings are made up of the Reed Commons building, Andrews Hall, Snow Hall, Aroostook Hall, Penobscot Hall and Washington Hall. The Reed Dining Commons building is the cafeteria for the entire campus. This single-story, stand alone structure houses a kitchen, cafeteria and small conference room. The remaining buildings are housing for the students. These buildings range in size from the large, three-story Andrews Hall with 21,200 square feet and 51 berthing rooms, to the single-story Aroostook Hall with 7,110 square feet and only eight berthing rooms.

Snow Hall

Penobscot Hall

2.3.1 General Building and HVAC System Descriptions:

Heating System:

The boilers for each of the buildings are listed below:

- Reed Commons: HB Smith 25Mills 10-Section, 902MBH, with two Taco 1HP Pumps
- Andrews Hall: HB Smith 350 Mills 10-Section, 2,045MBH, Powerflame 62-OBwith 1Hp Pump
- Snow Hall: HB Smith 19 Series 8-Section, 762MBH, Carelin 702 CRD, with 1.5 Hp Circ Pumps
- Aroostook Hall: HB Smith 20Mils 4-Section, 201MBH, Carlin 101CRD, with two 3/4 HP Pumps
- Penobscot Hall: HB Smith 20Mils 4-Section, 201MBH, Carlin 101CRD, with two ³/₄ HP Pumps
- Washington Hall: HB Smith 20Mils 4-Section, 201MBH, Carlin 101CRD, with two ³/₄ HP Pumps

Hot Water fintube radiation provides the heat for most of the buildings. Reed Commons also has a heating and ventilating unit, as well as a unit ventilator that can also provide heating.

Domestic hot water is provided by tanks with heat exchangers fed with heating hot water from the boilers. Snow Hall is the exception with an AO Smith COF-200-1000 oil fired hot water heater with a Powerflame CR1-0 burner. And Reed Commons has a Bock Oil water heater.

Existing Commons Hot Water Boiler

Existing Andrews Hall Boiler

Existing Washington Hot Water Boiler

Air Conditioning Systems:

There is no air conditioning in these buildings.

Ventilation Systems:

Most of the buildings are without ventilation systems, including Aroostook, Penobscot and Washington Hall. The only ventilation in Snow Hall is for the conference room which has a single unit ventilator. Andrews Hall has an existing heating and ventilating unit in the boiler room, which is designed to supply ventilation air to the common spaces of the building. Exhaust fans in the bathrooms are than intended to draw the air from the heating and ventilating unit, in from the common spaces through the living areas. Unfortunately, the unit is completely ineffective and therefore this is receiving no ventilation at this time. Snow Hall has a heating and ventilating unit for the main dining hall and a unit ventilator for the small conference room. Ventilation air is provided to the dining hall and drawn through the kitchen with the exhaust hoods used for cooking.

Snow Domestic Hot Water

Temperature Control Systems:

Most of the controls in these buildings are electronic thermostats to control the hot water fintube. There are Network 8000 DDC systems in the boiler rooms of Aroostook, Penobscot and Washington. An old Honeywell system controls the Snow Hall and Reed Commons boiler rooms, and the Tridium control system resides over the Andrews Hall boiler room.

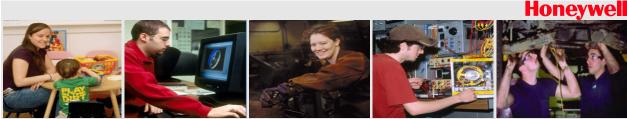
2.3.2 Utility Baseline Summary:

Residential Buildings – Utility Services

<u>Electric</u> – Electricity is main metered for the campus. All data and costs can be viewed under the Christie Complex information.

No. 2 Fuel Oil – Oil is delivered to an underground fuel oil tank for the building.

<u>Summary of Energy Use</u> – The table below summarizes the historical baseline utility profile for the building by energy type, usage, and cost. Fuel consumption is based upon the average of the consumption in the two (2) years with costs based upon current costs per published rate schedules or negotiated costs.


	Residential Buildings							
		Consumption	and Costs			ent Energy		gy %s
Utility	Units	Consumption	Cost - \$/yr	Unit Cost	MMBTUs /yr	\$\$/MMBTU	% of Total Cost	% of Total Energy
#2 Fuel Oil	Gallons	45,767	\$108,965	2.38	6,407	\$ 17.01	100.0%	100.0%
Totals			\$ 108,965		6,407		100.0%	100.0%

The baseline for Fuel Oil consumption is based on the average annual usage from July 2006 through June 2008. The baseline for Electricity is recorded and documented under the Christie Complex and represents the entire campus. The baseline for Electricity usage is based on the average annual usage from July 2006 through June 2008.

The baseline for Water / Sewer is recorded and documented under the Christie Complex and represents the entire campus.

This Page Intentionally Left Blank

2.4 Shop Buildings

Building:

The Shop Buildings are made up of the Maintenance Shop, the Maintenance Garage and Auto Body Shop. The Maintenance Shop and Garage are 3,348 and 1,936 square feet respectively, and the Auto Body Shop is 8,369 square feet. The Maintenance Shop is the main area for the maintenance personnel for the campus to work out of and contains a meeting area, tools/equipment and storage. The Maintenance Garage is used as a garage to store the larger equipment for the maintenance crew, it also offers a heated space should the equipment require repair in the winter. The Auto Body Shop is a teaching lab for body repair of automobiles.

2.4.1 General Building and HVAC System Descriptions:

Heating System:

The boilers for each of the buildings are listed below:

- Maintenance Shop: Williamson Oil fired furnace HBO-245, Becket A/AF
- Maintenance Garage: Metromatic Oil fired furnace HB/SU-275, Becket AFG
- Auto Body: HB Smith 25 Mills, Carlin burner

Domestic hot water is via small 20-gallon electric hot water heaters.

The Auto Body shop has fintube for the heat while the furnaces provide heat directly through forced hot air for the other two buildings.

Garage Furnace

Air Conditioning Systems:

There is no air-conditioning for any of these buildings.

Ventilation Systems:

None of these buildings have mechanical ventilation. The garage is mainly an unoccupied space and does not require ventilation. The shop has an older system in the attic that no longer operates and the Auto Body shop utilizes a Smokeeter to eliminate odors and fumes from the vehicles.

Ductwork to Auto Body Smokeeter

Temperature Control Systems:

Temperature control for each of these buildings is a single electronic thermostat.

2.4.2 Utility Baseline Summary:

Shop Buildings - Utility Services

<u>Electric</u> – Electricity is main metered for the campus. All data and costs can be viewed under the Christie Complex information.

No. 2 Fuel Oil – Oil is delivered to an underground fuel oil tank for the building.

<u>Summary of Energy Use</u> – The table below summarizes the historical baseline utility profile for the building by energy type, usage, and cost. Fuel consumption is based upon the average of the consumption in the two (2) years with costs based upon current costs per published rate schedules or negotiated costs.

Shop Buildings								
		Consumption	and Costs			ent Energy		gy %s
Utility	Units	Consumption	Cost - \$/yr	Unit Cost	MMBTUs /yr	\$\$/MMBTU	% of Total Cost	% of Total Energy
#2 Fuel Oil	Gallons	7,086	\$17,188	3.50	992	\$ 17.33	100.0%	100.0%
Totals			\$ 17,188		992		100.0%	100.0%

The baseline for Fuel Oil consumption is based on the average annual usage from July 2006 through June 2008.

The baseline for Electricity is recorded and documented under the Christie Complex and represents the entire campus. The baseline for Electricity usage is based on the average annual usage from July 2006 through June 2008.

The baseline for Water / Sewer is recorded and documented under the Christie Complex and represents the entire campus.

Energy Conservation Measures (ECMs) Section Three

3.0 Recommended Energy Conservation Measures

- Lighting and Lighting Control
- Building Infiltration Reductions
- Controls Upgrades
- Ventilation Upgrades
- Fuel Oil Heaters
- Domestic Hot Water Heat Exchanger Insulation
- Boiler Isolation
- Wood Chip Heating Plant
- Wind Turbine

3.0.1 ECM-1: Lighting and Lighting Control Upgrades

Applicable Buildings: Christie Complex, Mailman Trades, Reed Commons

Existing Conditions:

A lighting survey has been performed to evaluate the need for lighting efficiency upgrades. Many spaces are already T8 fixtures however there is an opportunity to retrofit fixtures at the College.

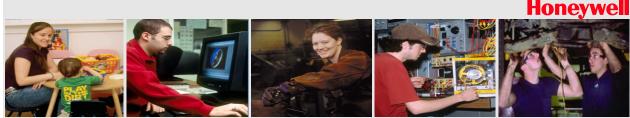
Existing Lighting Systems

Proposed Upgrades:

The following is a summary of the proposed upgrades by building:

	ECM-1: Lighting	
Bldg Option	15-Year Self-Funded	15-Year Capitol Improvements
Christie Complex	\checkmark	\checkmark
Mailman Trades	✓	✓
Residential Bldgs.	✓	✓
Shop Buildings	N/A	N/A

Christie Complex:


- 1. 12 400 watt Metal Halide High Bay and 52 8 ft 2 lamp HO Fixtures in Gym to 28- 4 lamp T5HO High Bay 2 ft. x 4 ft. fixtures with Wire Guards.
- 2. 8 175 watt Metal Halide recessed fixtures being replaced with, 8 New 2 lamp 4 ft. Surface Mount Direct/Indirect fixtures with High Performance T8 lamp and HE-H Ballast combination.
- 62 2 lamp F96 T12 HO 8 ft. hood fixtures in Elec. Labs being replaced with, 62 New 4 lamp 8 ft. High Efficiency Industrial Hood fixtures with wire guards and High Performance T8 lamp and HE-N Ballast combination.
- 4. 13 4 lamp 4 ft. T8 wrap fixtures to new High Efficiency 2 lamp Wrap fixtures with High Performance T8 Lamp and HE-L Ballast Combination.
- 5. 43 2 lamp F96 T12 HO 8 ft. Indirect fixtures being replaced with, 43 New 2 lamp 8 ft. High Efficiency Direct/Indirect fixtures with High Performance T8 lamp and HE-H Ballast combination.
- 6. 8 Occupancy Sensors will be installed in Bath Rooms and Locker Rooms.

<u>Mailman Trades:</u>

- 1. 2 400 watt Metal Halide High Bay to 2- 6 lamp T8HO High Bay 2 ft. x 4 ft. fixtures with Wire Guards.
- 2. 67 2 lamp F96 T12 HO 8 ft. hood fixtures in Residential Const. Lab to 32- 4 lamp T5HO High Bay 2 ft. x 4 ft. fixtures with Wire Guards.
- 21 2 lamp F96 T12 HO 8 ft. hood fixtures in Trades Labs being replaced with, 21 New 4 lamp 8 ft. High Efficiency Industrial Hood fixtures with wire guards and High Performance T8 lamp and HE-N Ballast combination.
- 95 2 lamp F96 T12 HO 8 ft. hood fixtures in Trades Labs being replaced with, 95 New 4 lamp 8 ft. High Efficiency Industrial Hood fixtures with wire guards and High Performance T8 lamp and HE-H Ballast combination.
- 5. 48 3 lamp 4 ft. T8 wrap fixtures to 24 new High Efficiency 2 lamp Wrap fixtures with High Performance T8 Lamp and HE-H Ballast Combination.
- 6. 22 3 lamp 4 ft. T8 wrap fixtures and 2 8 ft. 2 lamp strip fixtures to 17 new High Efficiency 8 ft. 4 lamp Vapor Tight fixtures with High Performance T8 Lamp and HE-L Ballast Combination.
- 7. 17 Occupancy Sensors will be installed in Class Rooms, Finishing Room and Stock Rooms.

Residential Buildings (Commons):

- 1. 10– 175 watt Metal Halide recessed fixtures being replaced with, 10 New 2 lamp 4 ft. Surface Mount Direct/Indirect fixtures with High Performance T8 lamp and HE-H Ballast combination.
- 2. 8 2 lamp F96 T12 HO 8 ft. strip fixtures in soffit being replaced with, 16 New 1 lamp strip fixture with High Performance T5HO lamp and HE-H Ballast combination.
- 3. 2 Occupancy Sensors will be installed in Bath Rooms.

<u>Shop Buildings:</u> 1. None Planned.

3.0.2 ECM-2: Building Infiltration Reductions

Applicable Buildings: Campus Wide

Existing Conditions:

A building infiltration survey has been performed to evaluate the need for building insulation and sealing upgrades. Visual inspection and smoke puffers were used to verify the location and severity of air leakage paths in the building envelope. Air leakage is defined as the uncontrolled migration of conditioned air through the building envelope, caused by pressure differences due to wind, chimney (or stack) effect, and mechanical systems. It has been shown to represent the single largest source of heat loss or gain through the building envelope of nearly all types of buildings.

Proposed Upgrades:

The following is a summary of the proposed upgrades by building:

	ECM-2: Building Infiltration Reductions						
Bldg Option	15-Year Self-Funded	15-Year Capitol Improvements					
Christie Complex	\checkmark	\checkmark					
Mailman Trades	\checkmark	✓					
Residential Bldgs.	\checkmark	✓					
Shop Buildings		\checkmark					

Christie Complex:

- 1. 26 Single Commercial Doors to be weather-stripped
- 2. 2 Double Commercial Doors to be weather-stripped
- 3. 2 Single Commercial Doors to be weather-stripped (sweeps only)
- 4. 1 Double Commercial Door to be weather-stripped (sweeps only)
- 5. 4 Over Head Doors to be weather-stripped
- 6. 21 Roof top Ventilators to be opened, perimeter sealed, dampers lubricated, 132 linear feet
- 7. 1,186' Roof Wall Joint to be sealed
- 8. 152'Exterior Caulking at Bulkhead

Mailman Trades:

- 1. 14 Single Commercial Doors to be weather-stripped
- 2. 6 Over Head Doors to be weather-stripped
- 3. 7 Roof top Ventilators to be opened, perimeter sealed, dampers lubricated, 40 linear feet
- 4. 381'Roof Wall Joint to be sealed

Residential Buildings:

- 1. 23 Single Commercial Doors to be weather-stripped
- 2. 5 Double Commercial Doors to be weather-stripped

3. 354'Roof Wall Joint to be sealed *Window Replacement Recommended

<u>Shop Buildings:</u>

- 1. 10 Single Commercial Doors to be weather-stripped
- 2. 2 Double Commercial Doors to be weather-stripped
- 3. 4 Over Head Doors to be weather-stripped

3.0.3 ECM-3: Control Upgrades

Applicable Buildings: Christie Complex, Mailman Trades, Reed Commons, Auto Body

Existing Conditions:

The College is currently utilizing a mixture of control systems, including pneumatic, electronic, Barber-Coleman Network 8000, to Honeywell Tridium DDC systems with a central based front end. In general, the Direct Digital Controls (DDC) front end system covers boilers plants and large air handling units. Occupancy schedules are built into each piece of equipment that is tied into the front end, where generally buildings are occupied by 7 or 8am and unoccupied in the evening. Some areas in the Christie Complex continue to be occupied with evening classes. The residential buildings are considered to be occupied all day, evenings and weekends unless they are specifically vacated. Unitary equipment, such as unit ventilators and fan coils, also are mixed controls where some are controlled centrally and some are not.

Snow Unit Ventilator Control

Outside Air Intake Covered Over

Even though the DDC system shows occupancy schedules and outdoor air intake percentages are built into the controls sequences, our data logging and site observations indicate some systems are not following their control sequences.

• HV-4 serving the Learning Center at the Christie Complex is scheduled to run from 6:00am to 8:30pm, but is actually running from Midnight to 2:30pm.

Northern Maine Community College Energy Audit Report

- The heating and ventilating unit serving the Electrical Construction Lab runs from 4:00am to 8:00pm, instead of its 5:00am to 4:00pm schedule.
- The heat recovery ventilator serving Martin Building runs 24-hours a day, in contrast to its 7am to 8:30pm schedule.

Unfortunately with DDC systems, the front end does not always indicate what is going on with the end pieces of equipment. We found a number of outside air dampers closed that were indicated as open on the DDC system.

- The three heating and ventilating units in the Electrical Labs in the Christie Complex all showed 10% outside air intake on the DDC system, but two were found to be closed tight.
- Heating and ventilating units 4, 6 and 7 at the Christie Complex have their outside dampers closed, but are scheduled for an average of 16% outside air.
- The heat recovery unit that serves Martin is intended to have 100% outside air intake, but due to the heat wheel being plugged, these dampers are also closed.

Also, our recorded data for each piece of equipment indicates not everything is following its prescribed schedules.

ECM-3: Control Upgrades							
Bldg Option	15-Year Self-Funded	15-Year Capitol Improvements					
Christie Complex	\checkmark	\checkmark					
Mailman Trades	\checkmark	\checkmark					
Residential Bldgs.		\checkmark					
Shop Buildings		\checkmark					

Proposed Upgrades:

The existing DDC system will be upgraded and will allow the following:

- 1. Provide closer Time-of-Day control over equipment
- 2. Better Night Setback
- 3. Modify scheduled outdoor air intakes to provide appropriate volumes of fresh air.
- 4. Provide CO₂ control on all air handlers: HV, HVAC, RTU, UV, FC.
- 5. DDC Controls Upgrade (convert all of the controls for radiation, unit heaters, TAB units, Unit Vents, exhaust fans in normally occupied areas such as classrooms, offices, conf rooms to DDC, but leave storage rooms, toilets, hallways and other normally unoccupied areas as they are currently controlled).
- 6. Programmable thermostats for the Auto Body and Maintenance Shop.
- 7. The existing systems on the Tridium DDC control system shall remain on the Tridium system.

Note: The upgrades listed above for equipment proposed to be replaced by ECM-4, Ventilation Upgrades are included in that measure. Upgrades are not currently included if the existing equipment remains. Also, an option to provide control feedback with positive damper and valve positioning can be added to the project if the College desires the additional information.

3.0.4 ECM-4: Ventilation Upgrades

Applicable Buildings: Christie Complex, Mailman Trades, Reed Commons, Auto Body

Existing Conditions:

The Campus lacks ventilation in at least a portion of each of the buildings. The following is a summary by location of the ventilation deficiencies.

- 1. <u>Christie Complex</u>: The vast majority of the Christie Complex has the capabilities to bring in the required outside air. The exceptions to this are all the areas served by TAB (Terminal Air Balance) units and the central offices and classrooms (Business and Finance offices, and rooms 204 through 207). Although the TAB systems are deigned to bring in outside air, they are controlled by a mixed air temperature which limits the amount of outside air brought in on cold days. The central offices and classrooms were at one time ventilated by using unit ventilators. These unit ventilators were converted to non-ventilating fancoils by having their outside air intakes blocked off.
- 2. <u>Mailman Trades</u>: Out of the five main areas for this building, only two of them have the necessary equipment, that is operational, that can provide the appropriate ventilation. The Diesel and Automotive areas have working air handlers that do provide ventilation. The control of these units for schedule and outdoor air intake shall be modified under the Controls Upgrade measure to match current occupancy schedules. The Residential Construction area has no real ventilation equipment. There is an active dust collection system that will pull air in through the doors and cracks of the building by placing the space under negative pressure, but the use of this system is not specific to occupancy schedules. The Welding Lab has an antiquated make-up air heat recovery system that is rarely used. The Plumbing and Heating Lab has a heating and ventilating unit that has not run for some time. Each of these areas also has classrooms that are served by unit ventilators. The use and operation of this equipment is based on individual teachers need for heat, rendering ineffective as a ventilation system.
- 3. <u>Residential Buildings</u>: Most of the Residential Buildings have no ventilation systems. The two exceptions to that are Reed Commons which is fully ventilated with a heating and ventilating unit and a unit ventilator. The other exception is Andrews Hall which has a central heating and ventilating unit. The Andrews Hall ventilation unit is ineffective at ventilating the central portions of the buildings, largely due to the outside air damper being blocked nearly completely. Site observations also indicated that the Andrews heating and ventilating unit was not capable of moving a significant volume of air.
- 4. <u>Shop Buildings</u>: There is no existing ventilation system in any of the shop buildings.

Proposed Upgrades:

The following is a summary of the proposed upgrades by building:

ECM-4: Ventilation Upgrades						
Bldg Option	15-Year Self-Funded	15-Year Capitol Improvements				
Christie Complex-1.a		✓				
Christie Complex-1.b		\checkmark				
Mailman Trades-2.a		✓				
Mailman Trades-2.b		✓				
Mailman Trades-2.c		\checkmark				

Table continued on following page.

	ECM-4: Ventilation Upgrades						
Bldg Option	15-Year Self-Funded	15-Year Capitol Improvements					
Residential Bldgs-3.a		\checkmark					
Shop Buildings-4.a		✓					
Shop Buildings-4.b		✓					

- 1. <u>Christie Complex</u>: Replace the unit ventilators with new unit ventilators and open the outside air intakes for the central offices and classrooms. Replace the existing TAB units with fan coils. The fan coils shall be piped with hot water to provide tempering of the outside air. The fan coils shall also recirculate some air to the space. (It should be noted that the heating water distribution system will need to be modified to ensure required heating water is reaching all the new equipment. Modification will include piping and pumping upgrades to the hot water distribution system).
- 2. <u>Mailman Trades</u>: Provide a new heating and ventilating unit for each of the Residential Construction, Welding Lab and Plumbing and Heating Lab areas. Heating and ventilating units shall be sized to provide primary ventilation, as well as make-up air to the spaces to replace their exhausted air. Additionally, provide a fume collection system for the Welding Lab. Replace the classroom unit ventilators (seven).
- 3. <u>Residential Buildings</u>: Provide Venmar Solo 2.0, or equivalent, heat recovery ventilators for the following Residential Buildings: Aroostook Hall, Penobscot Hall, Snow Hall and Washington Hall (Andrews Hall has been excluded from this plan due to its upcoming renovation).
- 4. <u>Shop Buildings</u>: Provide Venmar Solo 2.0, or equivalent, heat recovery ventilators in the Maintenance Shop and the Auto Body buildings. Add an exhaust fan to the maintenance garage to ensure proper removal of fumes.

3.0.5 ECM-5: Fuel Oil Heaters

Applicable Buildings: Christie Complex, Residential Buildings (except Commons and Penobscot), Shop Buildings

Existing Conditions:

The existing boilers use #2 oil as a fuel source.

Proposed Upgrades:

	ECM-5: Fuel Oil Heaters						
Bldg Option	15-Year Self-Funded	15-Year Capitol Improvements					
Christie Complex	\checkmark	\checkmark					
Mailman Trades	N/A	N/A					
Residential Bldgs.	\checkmark	\checkmark					
Shop Buildings							

1. Provide combustion oil heaters (Shor-Burn) for the existing boilers. Three oil heaters for the Christie Complex and four oil heaters for the Residential buildings. The combustion oil heaters will increase boiler system efficiency by providing a cleaner and more complete burning of oil, and decreasing the build-up of soot on the boiler walls.

Snow Oil Heater

3.0.7 ECM-6: Domestic Hot Water Heater Exchanger Insulation

Applicable Buildings: Christie Complex

Existing Conditions:

The domestic hot water heat exchanger (DHW Hx) in the boiler room of the Christie Complex is uninsulated.

Proposed Upgrades:

ECM-7: Hx Insulation							
Bldg Option	BldgOption15-Year Self-Funded15-Year Capitol Improvements						
Christie Complex 🗸		\checkmark					

1. Insulate the bare heat exchanger in the boiler room of Christie Complex to current ASHRAE standards.

3.0.8 ECM-7: Boiler Isolation Valves

Applicable Buildings: Christie Complex

Existing Conditions:

The existing boilers have no automatic isolation valves to stop flow through a boiler if it is in standby mode.

Proposed Upgrades:

ECM-8: Boiler Isolation Valves						
BldgOption15-Year Self-Funded15-Year Capitol Improvem						
Christie Complex	\checkmark	\checkmark				
Mailman Trades	N/A	N/A				
Residential Bldgs.	N/A	N/A				
Shop Buildings	N/A	N/A				

1. As part of a potential expansion of the DDC controls system, this recommendation would provide threeposition isolation valves in the return lines of the boilers. It would provide DDC controls to close the valve when a boiler is not needed for building heat. This will prevent water from flowing through the lag boiler and decreasing system supply water temperature.

It will also allow the lag boilers to be maintained at a lower temperature when it is not needed for building heat, thereby decreasing stand-by losses through the surfaces of the boiler and through the boiler breeching.

3.0.9 ECM-8: Wind Turbine

Applicable Buildings: College Campus

Existing Conditions:

There are a number of wind turbines operating or being built in the area. The available wind data indicates that the NMCC campus would be a good candidate for a wind turbine installation.

Proposed Upgrades:

Honeywell suggests continuing to study the wind turbine opportunity. The preliminary study for wind will:

- Analyze supplied wind data and provide a Wind Resource Assessment
- Determine the most appropriate location for the turbine
- Initial Community Impact Assessments such as visual, sound and shadow flicker
- Identifying specific permitting requirements.

3.0.10 ECM-9: Wood Chip Heating Plant

Applicable Buildings: Christie Complex and Mailman Trades

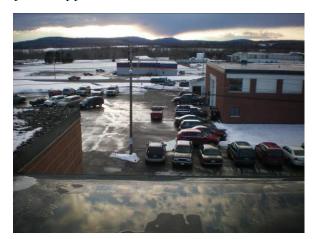
Existing Conditions:

The existing boiler plants for the Christie Complex and Mailman Trades buildings utilize #2 fuel oil as their fuel sources. When comparing the price and associated heat output of an oil boiler plant to that of a Wood Chip Heating Plant, the use of wood chips is nearly one quarter the cost of oil.

Proposed Upgrades:

ECM-10: Wood Chip Heating Plant						
BldgOption15-Year Self-Funded15-Year Capitol Improvement						
Christie Complex		\checkmark				
Mailman Trades		\checkmark				
Residential Bldgs.	N/A	N/A				
Shop Buildings	N/A	N/A				

Provide a new wood chip heating plant (a single boiler with approximately 5MMBH capacity) to supply heating water for the building. The boiler plant will be housed in and around the Mailman Trades boiler room. The existing space in the boiler room and addition will house a wood chip heating plant, a wood chip storage bin, heating water pumps and auxiliary equipment for the wood chip heating plant. The storage bin section of the building will be approximately 20x30 feet, and the boiler section will be approximately 24x30 feet and 20-feet tall. The painted metal stack will be approximately 30 to 40 feet tall. A combination of piping interior to the Mailman Trades and underground piping (Extru-Therm by Perma-pipe or equivalent) will be run from the wood chip heating plant to the existing Christie Complex boiler room, and new valves and controls will be provided to allow the wood chip heating plant to be the primary boiler, and the oil boilers in the Christie Complex will be auxiliary boilers. The wood chip heating plant will be sized for slightly less than full capacity, so that the dual fuel boilers can be utilized during peak heating periods, which will allow for turn-over of the oil in the oil tanks (oil should not sit for long periods of time for fear of contamination from the growth of organisms) as well as exercising the oil boilers.


The benefits of a new wood chip heating plant include: reduced energy costs, local fuel supply, renewable fuel source, third fuel option, as well as existing infrastructure re-use.

- There is a drastic cost reduction in the use of wood chips versus fuel oil. As fuel oil pricing continues to fluctuate, the price of wood chips should remain relatively steady.
- Wood chips are acquired locally from Maine, rather than purchasing oil from overseas.
- Wood chips are a renewable source of fuel. Trees continue to grow while our fuel oil sources only continue to diminish.
- A second fuel option gives the College with the maximum flexibility in how to heat their buildings, as well as setting themselves in a very strong negotiating position for their other fuel sources.
- The wood boiler will continue to provide benefit to the College long after the payback period has ended.

Due to the unpredictability of today's fuel markets, Honeywell cannot warranty or guarantee either expressed or in writing, the cost of fuel or the difference between the cost of fuels. The savings for this measure are based solely on the cost difference of the fuel rates that have been agreed upon by the College. There is also variability in the heat content of the wood chips. The heat content is dependent on the type of wood, amount of bark and moisture content of the wood. Our calculations have assumed 45% moisture content and standard chips. The heat content of the chips will need to be verified during design from the anticipated supplier.

This Page Intentionally Left Blank

3.1 Non-Energy Recommendations (NERs)

3.1.1 NER-1: Aging and Past Useful Life Equipment Replacement

Applicable Buildings: Campus Wide

Existing Conditions:

There are various pieces of equipment throughout the Campus that are past their useful life and are becoming cumbersome and costly to maintain.

Christie Complex:

1. Heating and Ventilating units HV-1, 2, 4, 6, 7, 8 are approaching the end of their useful life.

<u>Mailman Trades:</u>

- 1. The existing boiler in the Mailman Trades Building is at the end of its useful life. It continues to operate, however the boiler jacket is falling off and the overall system efficiency is dropping.
- 2. Exhaust fans in each of the lab / shop areas.
- 3. Relief vents in each of the lab / shop areas are not operational. Dampers are either disconnected or no longer operating.

<u>Residential Buildings:</u>

1. The existing domestic Hot Water System in Snow Hall has become unreliable and is leaking from the heat exchanger.

Shop Buildings:

- 1. The smokeeter in the Auto Body shop is aging and will need replacement in the near future.
- 2. The Furnace in the Maintenance Shop is passed its useful life.
- 3. The Furnace in the Maintenance Garage is passed its useful life.

Proposed Upgrades:

The following is a summary of the proposed upgrades by building:

NER-2: Aging and Past Useful Life Equipment Replacement						
Bldg Option	15-Year Self-Funded	15-Year Capitol Improvements				
Christie Complex-1.a						
Mailman Trades-2.a	\checkmark	✓				
Mailman Trades-2.b		\checkmark				
Mailman Trades-2.c		✓				
Residential Bldgs-3.a	\checkmark	\checkmark				
Shop Buildings-4.a		\checkmark				
Shop Buildings-4.b		✓				
Shop Buildings-4.c		✓				

<u>Christie Complex:</u>

1. **NOT INCLUDED:** It is recommended to NMCC by Honeywell that HV-1, 2, 4, 6, 7, 8 in Christie Complex be scheduled and budgeted for replacement over the next few years.

<u>Mailman Trades:</u>

- 1. Replace the existing Mailman Trades boiler. Ensure boiler is properly sized to accommodate required ventilation levels. Evaluate the opportunity to install two boilers versus one.
- 2. Replace the existing exhaust fans in each of the lab/shop areas.
- 3. Replace the existing relief vents in each of the lab/shop areas.

Residential Buildings:

1. Redesign and replace the existing domestic hot water system in Snow Hall to match the other residential halls for hot water design (provide a tank with integral heat exchanger, equivalent to Turbomax 109A).

Shop Buildings:

- 1. Replace the existing smokeeter in the Auto Body shop in kind.
- 2. Replace the existing furnace in the Maintenance Shop in kind.
- 3. Replace the existing furnace in the Maintenance Garage in kind.

3.1.2 NER-2: Modify/Upgrade Combustion Air Control

Applicable Buildings: Campus-Wide

Existing Conditions:

All of the boiler rooms have issues with their combustion air. Most of the issues are due to the openings being blocked off due to problems related to freezing.

Many of the louvers are physically blocked with wood, metal or insulation. Some damper actuators have been disconnected. Adequate air is required to combust the fuel for a clean and efficient operation.

Commons' Combustion Air without Linkage

Proposed Upgrades:

NER-2: Modify / Upgrade Combustion Air Control						
BldgOption15-Year Self-Funded15-Year Capitol Improvem						
Christie Complex	\checkmark	\checkmark				
Mailman Trades	\checkmark	✓				
Residential Bldgs.	\checkmark	\checkmark				
Shop Buildings	\checkmark	\checkmark				

Upgrade the combustion air damper controls by replacing actuators and tightening linkages. Also, add unit heaters at the point of entrance to provide some heating of the air intake.

3.1.3 NER-3: Improve Heating Water Distribution

Applicable Buildings: Christie Complex

Existing Conditions:

The existing heating hot water distribution system is not currently capable of providing sufficient heating water flow to the north end of the building. The College has been unable to adequately ventilate the spaces north of the Gymnasium due to the inability to heat the incoming air. Upgrades to the ventilation systems in this area will require this recommendation be completed to maintain a comfortable and code compliant environment.

Proposed Upgrades:

NER-4: Improve Heating Water Distribution					
BldgOption15-Year Self-Funded15-Year Capitol Improvements					
Christie Complex		\checkmark			

Provide modification to the piping and pumping of the heating hot water system. Evaluate the entire system for flow capabilities. Add balancing values as needed and balance the entire system.

3.1.4 NER-4: Repair/Modify Boiler/Furnace Exhaust in Plumbing and Heating

Applicable Buildings: Mailman Trades

Existing Conditions:

There are multiple boilers and furnaces that are tied into the same chimney and breeching system. The system has been added to with induced draft fans, but continues to be problematic for the equipment operation. The manner in which this equipment is vented is a clear violation of both NFPA 31 and NFPA 211.

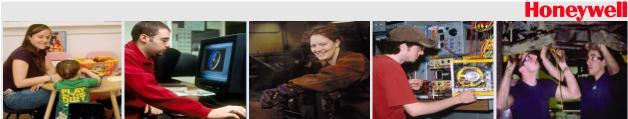
Proposed Upgrades:

NER-4: Repair / modify boiler / furnace exhaust in Plumbing and Heating							
Bldg	Bldg Option 15-Year Self-Funded 15-Year Capitol Improvements						
Mailman Trades		\checkmark	\checkmark				

Redesign and repipe the existing equipment for all draft requirements and in accordance with all applicable codes, make additional flue vents as needed to accommodate the existing equipment.

Mock Boilers and Furnaces Flue Gas Exhaust Pipe

3.1.5 NER-5: Replace Welding Lab Dust Collection and Make-up Air System


Applicable Buildings: Mailman Trades

Existing Conditions:

The Welding Lab has a mixture of heating and air quality equipment serving the space. The heating is provided, primarily, from unit heaters. An existing make-up and exhaust system with an integral heat recovery component is in poor condition, and runs loudly enough to make it difficult for the class to function, as well as pose a hazard. The exhaust system has ducted exhaust to each station which collects the fumes and delivers them to the outdoors. A glycol coil with the exhaust unit recovers heat from the exhaust stream and pumps the glycol to a preheat coil in the make-up air unit. Both the exhaust and make-up air units produce a substantial amount of noise while operating, and are therefore, rarely turned on. Additionally, smokeeters within the space provide some cleaning of the air. The smokeeters take in the welding fumes from the general air and through a filter clean the space air. These systems are a good first step and provide some relief of the toxic air, but they do not provide a clean classroom environment.

Proposed Upgrades:

	NER-2: Modify / Upgrade Combustion Air Control					
Blo	dg Option	15-Year Self-Funded	15-Year Capitol Improvements			
Ma	ulman Trades		\checkmark			

Install a dust/fume collection system. United Air Specialists SFC Pulse-Jet Cartridge Dust Collector, or equivalent, at 11.5"wc installed outside on a concrete pad and ducted inside. Six inch duct drops to each welding station with magnetic retractable arms. Fan silencer and air safety filters to allow the air to be recirculated back to the space.

This Page Intentionally Left Blank

3.2 Reviewed and Not Recommended (RNRs)

3.2.1 RNR-1: Dust Collector Variable Frequency Speed Drive (VFD)

Applicable Buildings: Mailman Trades - Residential Construction

Existing Conditions:

The existing dust collector for the Residential Construction in the Mailman Trades Building runs at a constant speed, regardless of the number of devices that are being used that produce dust. Existing dampers in the exhaust system allow operators to open and close each station as needed.

Proposed Upgrades:

Install a VFD to serve the dust collector. Modulate speed of the dust collector fan to maintain a constant system negative pressure to insure proper capture velocity from each piece of equipment.

Not Recommended:

The economics to this measure were not beneficial to the College and other benefits, such as fan and motor increased longevity, do not outweigh the lack of economic benefit.

Residential Construction Dust Collector

3.2.2 RNR-2: HRU Demand Control Ventilation

Applicable Buildings: Martin Building as part of the Christie Complex

Existing Conditions:

The existing heat recovery unit (HRU) ventilates the Martin building. They ventilate only with tempered air (70-75°F air temperature). Space heat is primary provided through the locally controlled baseboard heat in each of the classrooms.

Proposed Upgrades:

Install VFDs on each of the fans within the HRU unit and control dampers to each of the branches supplying each area. These dampers will be controlled by CO_2 levels in each area. This will allow the overall intake of outside air to be reduced to only what is specifically required for each classroom.

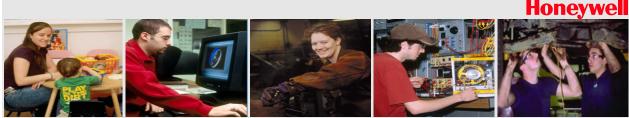
Not Recommended:

The economics to this measure were not beneficial to the college and other benefits, such as fan and motor increased longevity, do not outweigh the lack of economic benefit.

3.2.3 RNR-3: Geothermal Heat Pumps

Applicable Buildings: Central Offices and Classrooms for Christie

Existing Conditions:


The central offices and classrooms were at one time ventilated by using unit ventilators. These unit ventilators were converted to non-ventilating fan-coils, by having their outside air intakes blanked off.

Proposed Upgrades:

Replace the blocked unit ventilators with new geothermal heat pumps and open the outside air intakes for the central offices and classrooms.

Not Recommended:

The economics to this measure were not beneficial to the college and other benefits, such as added air conditioning, do not outweigh the lack of economic benefit.

Measurement and Verification Section Four

4.0 Overview

Baseline and Measurement & Verification (M&V) of Guaranteed Savings

The Measurement and Verification (M&V) Plan will identify the methodology to be used to capture and quantify the changes in performance and operational parameters. Parameter changes may be measured, calculated via a spreadsheet, or stipulated. The values of the performance and operational parameters are needed to calculate energy savings associated with ECM implementation.

Honeywell utilizes M&V methodologies established by the Department of Energy's Federal Energy Management Program (FEMP). A brief description of each methodology is provided below.

- ✤ Option A is the preferred method for establishing an energy baseline, when it is determined that savings calculations will be achieved from the direct result of reductions in energy performance parameters, and the ECM is a constant load within the facility/building. Option A allows for spot measurement, use of empirical data, or performance parameter stipulation to assess baseline consumption. If performance parameters can be directly measured neither continuous metering nor modeling will be required.
- ✤ Option B is the preferred method for establishing energy baselines, when it is determined that energy savings will be the result of reductions in energy performance parameters, but the equipment/end-use device affected by an ECM is not a constant load within the facility/building. Option B requires spot measurement, short-term metering, or data logging to assess baseline consumption.
- ✤ Option C is the preferred method for establishing an energy baseline, when savings calculations make it necessary to measure the interactive affects between variable load ECMs, to determine the impact of the interactive affects of several ECMs on energy savings. This option would typically be used if metered data were available. Option C requires verification of actual performance via whole-facility or mainmeter measurement.
- ✤ Option D is the preferred method for establishing an energy baseline, when savings calculations will deem it necessary to measure the interactive effects between variable load ECMs, to determine the impact of the interactive affects of several ECMs on energy savings. Option D requires verification of actual performance via whole-building/facility analysis using a recognized computerized analysis simulation such as Carrier HAP, Trane TRACE or DOE2.1e or BIN method spreadsheet.

Data Gathering and Quality Control

Honeywell will assign a Measurement & Verification Specialist for the project site. This individual is responsible for defining and verifying the baseline, as well as conducting post-installation and regular interval M&V activities. The M&V Specialist will work in close concert with the Performance Contracting Engineer (PCE), the project installation team, and the College to ensure that accurate information is obtained.

Northern Maine Community College Energy Audit Report

The Project Manager will help ensure performance compliance, and will be responsible for proper installation, operation, and maintenance of the ECMs in accordance with design and contractual parameters. This includes ensuring that verification data is accurately collected and analyzed, and that measuring equipment is calibrated in accordance with prescribed standards.

The following table depicts the recommended M&V for the ECMs included in this audit report. Prior to the execution of a performance contracting agreement, the College and Honeywell will agree upon which M&V approach makes the most sense for the College. Pricing for annual M&V services is currently excluded from the proposal options included in this report, and will be subject to the final scope of work and final M&V method selected.

ECM Technology Category	ECM ID	ECM Description	Pre- Installation Option Used	Post- Installation Option Used	Ongoing Option Used
ECM #1 Lighting Systems Improvements	1	Efficiency Improvements and Controls	A (Elec)	A (Elec)	A (Elec)
ECM #2 Building Infiltration Reductions	2	Air Sealing; Insulation	C (Fuel Oil)	C (Fuel Oil)	C (Fuel Oil)
ECM #3 Energy Management Control System Improvements	3	Replace Building Controller; Control Valves; Ftr Control in Offices, Corridor; Computer Room Control; Upgrade Schedules and Setbacks	A (Elec) C (Fuel Oil)	A (Elec) C (Fuel Oil)	A (Elec) C (Fuel Oil)
ECM #4 Ventilation Upgrades	4	Add or Increase Ventilation	A (Elec) C (Fuel Oil)	A (Elec) C (Fuel Oil)	A (Elec) C (Fuel Oil)
ECM #5 DHW Heat Exchanger Insulation	5	Insulate Existing Uninsulated Domestic Hot Water Heat Exchanger	C (Fuel Oil)	C (Fuel Oil)	C (Fuel Oil)
ECM #6 Oil Heaters	6	Add Pre-Heaters for the Oil to the Boilers	A (Elec) C (Fuel Oil)	A (Elec) C (Fuel Oil)	A (Elec) C (Fuel Oil)
ECM #7 Boiler Isolation	7	Add Control Valves to Isolate the Unused Boiler from the System	C (Fuel Oil)	C (Fuel Oil)	C (Fuel Oil)
ECM #8 Wind Turbine			A (Elec)	A (Elec)	A (Elec)

M&V Options for Selected ECMs - Preliminary	
---	--

ECM Technology Category	ECM ID	ECM Description	Pre- Installation Option Used	Post- Installation Option Used	Ongoing Option Used
ECM #9 Wood Boiler	9	Install a Wood Boiler Plant to Serve Two Building in Lieu of Burning Oil	A (Elec) C (Fuel Oil)	A (Elec) C (Fuel Oil)	A (Elec) C (Fuel Oil)

This Page Intentionally Left Blank

4.1 ECM Specific M&V Plan Samples

4.1.1 Lighting Systems Improvements, ECM 1 & Wind Turbine, ECM 8

Honeywell recommends the use of the FEMP Option A protocol for these ECMs. Option A provides a reasonable and cost effective method of conducting measurement and verification (M&V).

ECM	E E E E E E E E E E E E E E E E E E E				Project Phase			
Technology Category Method		Type Paramet		Baseline	Post-Installation	Regular Interval		
Lighting Improvements	А	Performance	Fixture, PC wattage	One-time measurement of representative fixture wattage	One-time measurement of representative fixture wattage	Utility Regression & annual review and walk- through		
Wind Turbine	(Electric)	Operational	Annual operating hours & times	Based on interview & Logger data and submetered data	Utility Regression	Utility Regression & annual review and walk- through		

M&V Methodology for ECM Technology Categories

Approach for Establishing Baseline

Honeywell used the steps listed below to establish the baseline for this ECM.

- 1. Developed the baseline technology inventory based upon visual inspection.
- 2. Determined the baseline and proposed wattages based on industry accepted Independent Testing Laboratory (ITL) reports, as well as a cross section of manufacturers' data.
- 3. Established the hours of operation through interviews with facility personnel.
- 4. Developed a spreadsheet model of the lighting systems and computers with the above information and the current electric rate schedule.
- 5. Measure the baseline wattages prior to construction and adjust, if needed, as proposed in Step 6 below.
- 6. The sampling plan will involve dividing the population of fixtures into groups. Assignment of a fixture to a group will be determined by fixture type. For each fixture group with more than 10 fixtures, Honeywell will measure a minimum of three fixtures to determine the power consumption of the fixture prior to and after the lighting retrofit. If the measured fixture power consumption has a variance of 5% or more within a group, Honeywell will then measure a minimum of 5 fixtures in that group, discard the highest and lowest measured values, and average the remaining 3 measurements to determine average fixture power consumption. Energy savings will be determined by using the average of the three fixture measurements.

Approach for Establishing Actual Energy Usage

After the retrofit is complete, Honeywell will measure the equipment performance for the required new equipment using the same approach as outlined for the baseline. A Fluke 39 meter, or equivalent, will be used for measurements.

4.1.2 Building Infiltration Reductions, ECM 2 & Heat Exchanger Insulation, ECM 5 & Boiler Isolation, ECM 7

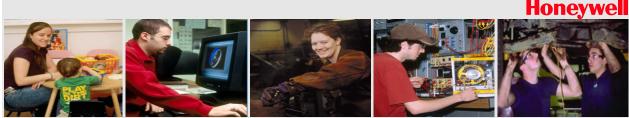
Honeywell recommends the use of the FEMP Option C protocol for this ECM. Option C provides the most reasonable and cost effective method of conducting measurement and verification (M&V).

ECM	FEMP	Parameter		Project Phase				
Technology Category	Method	Туре	Parameter	Baseline	Post- Installation	Regular Interval		
Building Infiltration Reductions Heat	С	Performance	Infiltration/ Insulation Condition	Energy Modeling	Utility Regression	Monitored with annual review and walk- through		
Exchanger Insulation Boiler Isolation	(Fuel Oil)	Operational	Annual operating hours & times/ Valves operational	Stipulated based on interview data	Utility Regression	Stipulated		

M&V Methodology for ECM Technology Categories

Approach for Establishing Baseline

Honeywell used the steps listed below to establish the baseline for this ECM.


- 1. Develop the baseline technology inventory, as shown in the Appendix Section, based upon visual inspection and smoke puffers and existing window specifications.
- 2. Determine the baseline and proposed heat flow rates based on industry calculations.
- 3. Establish the hours of operation through interviews with NMCC personnel.
- 4. Develop a working model of the systems with the above information and the current rate schedule.

Approach for Establishing Actual Energy Usage

After the retrofit is complete, Honeywell will monitor the utility regression of the new equipment installed.

Annual M&V Activities

Honeywell's M&V Specialist will conduct an annual review of replacement equipment and an annual walk-through of the facility. This will insure the energy savings guarantee is met or exceeded. Observations from the annual review and walk-through will be documented and will accompany the annual energy savings report to the College throughout the term of the contract.

4.1.3 Energy Management Control System Improvements, ECM 3 * Ventilation Upgrades, ECM 4 * Oil Heaters, ECM 6 * Wood Boiler Plant, ECM 9

Honeywell recommends the use of the FEMP Option C protocol for this ECM, unless esteemed baseline can be measured. Option A provides a reasonable and cost effective method of conducting measurement and verification (M&V).

ECM	FEMP	P Parameter			Project Phase	
Technology Category	Method	Туре	Parameter	Baseline	Post- Installation	Regular Interval
Controls	A (Electric)	Performance	Equipment kW	Stipulated based on meter data and equip. data	One-time measurement of equip. wattage	Monitored with annual walk- through
Ventilation Upgrades	(Eacture)	OperationalAnnual operating hours & timesStipulated based on survey and meter data		based on survey and	Utility Regression	Monitored with annual walk- through
Oil Heaters Wood Boiler (Fuel Oil & Electric)	С	Performance	Temperature Trend Data	Stipulated based on survey and logger data	Utility Regression	Monitored with annual walk- through
	(Fuel Oil)	Operational	Annual operating hours & times	Stipulated based on survey and logger data	Utility Regression	Monitored with annual walk- through

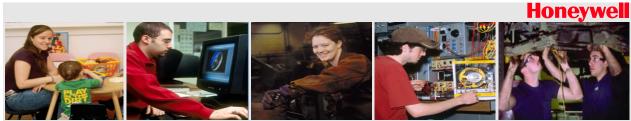
M&V Methodology for ECM Technology Categories

Approach for Establishing Baseline

Savings were calculated using spreadsheet energy calculations. The spreadsheets utilize calculations based on ASHRAE (American Society of Heating, Refrigeration and Air-Conditioning Engineers) Modified Bin Temperature Method based methodology using hourly bin weather data for the Concord area.

The following process was used to model each building with spreadsheets:

- 1. Loads were estimated or measured for each system for each temperature bin
- 2. The operating efficiency of the equipment was calculated using the collected data and field measured by steady state combustion efficiency testing.
- 3. Hours of operation were determined for each load..
- 4. Energy consumption is the product of load and hours of operation divided by efficiency
- 5. Energy and cost savings results were then aggregated and compared to baseline measurements, if available.



Approach for Establishing Actual Energy Usage

After the retrofit has been installed, Honeywell will monitor the utility usage for both electricity and fuel oil on an annual basis.

Annual M&V Activities

After the retrofit has been installed, Honeywell's M&V specialist will conduct an annual walkthrough of the facility to verify the condition and operation of the equipment. This will include a visual check of the equipment with the goal of identifying and reporting/correcting any potential energy wasting situations. Items that will be visually checked include air flow around and through equipment, and general condition of equipment. Observations from the annual walk-through will be documented and will accompany the annual energy savings report.

- Appendix A Lighting Room by Room Detail
- Appendix B Temperature Logger Data
- Appendix C On-Time Logger Data
- Appendix D Preliminary Utility Analysis
- Appendix E Energy Calculations

Appendix A Lighting Room by Room Detail

The Lighting Room-by-Room data is the projected scope of work on a room-by-room basis. The room-by-room data is a detailed list of how each area can be modified to save energy. The improvements listed in these data sheets determine whether the change is in operational hours or in the power consumed by each lighting fixture. Hours of operation are changed if a lighting control method is added. Energy consumed is changed if a physical modification of the fixture, ballasts or lamps is scheduled.

Lighting Audit Report

Christie Complex

							Project IL) 2	09	
<u>1</u>	Location: Gym		New Fixture	# of Fixtures	Average Watts	Usage (ann.)	KWH (tot/m)	KW (total)	KWH Saved (tot/ann)	KW Saved (total)
	Existing 82HOH	2 Lamp Magnetic High F96T12/HO/EE Lamp	•	52	2 227	1200	1180.40	11.804	9787.20	8.10
	Proposed N4T5HOWG	2 - 2 Lamp T5HO Elec FP54T5HO Lamps	ctronic Ballasts and 4	16	5 228	1200	364.80	3.648	\checkmark	
2	Location:		New Fixture	# of Fixtures	Average Watts	Usage (ann.)	KWH (tot/m)	KW (total)	KWH Saved	KW Saved
	Gym			T IACUTOS	Watto	(ann.)	(courily	(total)	(tot/ann)	(total)
	Existing 400MHB	400 W att Metal Halide 400 W att MH W att La	0 ,	12	2 460	400	184.00	5.52	1113.60	2.7
	Proposed N4T5HOWG	2 - 2 Lamp T5HO Elec FP54T5HO Lamps	ctronic Ballasts and 4	12	2 228	400	91.20	2.736	✓	
<u>3</u>	Location:		No Change	# of Fixtures	Average Watts	Usage (ann.)	KWH (tot/m)	KW (total)	KWH Saved	KW Saved
	Mens Locker room			T IACUT 00	nutto	(ann)	(courily	(total)	(tot/ann)	(total)
	Existing 43PT8	3 Lamp Electronic Ball Lamps	last and 3 FO32T8	3	8 88	3600	79.20	0.264	422.40	0.0
	Proposed X43T8	Existing 3 Lamp Electi FO32 T8 Lamps	ronic Ballast and 3	3	88	2000	44.00	0.264		
<u>4</u>	Location: Mens Locker room		Install PIR Occ. Control	# of Fixtures	Average Watts	Usage (ann.)	KWH (tot/m)	KW (total)	KWH Saved	KW Saved
	Existing Switching	Existing switching con	trols	() C	0	0.00	0	(tot/ann) 0.00	(total) 0.00
	Proposed OCC-CM-PDT10	Ceiling Mount Occupa Technology	ncy Sensor Dual	1	I C	0	0.00	0	\checkmark	
<u>5</u>	Location:		No Change	# of Fixtures	Average Watts	Usage	KWH (tot/m)	KW (total)	KWH Saved	KW Saved
	Womens Locker Room	n		FIXIULES	Walls	(ann.)	(tot/m)	(total)	(tot/ann)	(total)
	Existing 43PT8	3 Lamp Electronic Ball Lamps	last and 3 FO32T8	3	8 88	3600	79.20	0.264	422.40	0.00
	Proposed X43T8	Existing 3 Lamp Electi FO32 T8 Lamps	ronic Ballast and 3	3	8 88	2000	44.00	0.264		
6	Location:		Install PIR Occ.	# of	Average	Usage	KWH	KW	KWH	KW
<u> </u>	Womens Locker Room	n	Control	Fixtures	Watts	(ann.)	(tot/m)	(total)	Saved (tot/ann)	Saved (total)
	Existing Switching	Existing switching con	trols	(0 0	0	0.00	0	0.00	0.0
	Proposed OCC-CM-PDT10	Ceiling Mount Occupa	nov Sonoor Duol	1		0	0.00	0		

Page 1 of 4

Proiect ID 209

							Project IL) 2	09	
<u>7</u>	Location:		No Change	# of	Average	Usage	KWH	KW	KWH	KW
_	Gym Hall			Fixtures	Watts	(ann.)	(tot/m)	(total)	Saved (tot/ann)	Saved (total)
	Existing 2UT8	2 Lamp Electronic Bal Lamps	last and 2 FBO32T8	!	5 60	3600	90.00	0.3	480.00	0.00
	Proposed X2UT8	Existing 2 Lamp Elect FBO32T8 Lamps	ronic Ballast and 2		5 60	2000	50.00	0.3		
<u>8</u>	Location:		Daylight Controls	# of Fixtures	Average Watts	Usage (ann.)	KWH (tot/m)	KW (total)	KWH Saved	KW Saved
	Gym Hall Existing Switching	Existing switching con	trole		0 0	0	0.00	0	(tot/ann) 0.00	(total) 0.00
	Existing Switching	Existing switching con			5 0	0	0.00	0	0.00	0.00
	Proposed OCC-CMPC	Ceiling Mount Dayligh	t Harvesting Sensor		1 0	0	0.00	0		
<u>9</u>	Location:		New Fixture	# of Fixtures	Average Watts	Usage (ann.)	KWH (tot/m)	KW (total)	KWH Saved	KW Saved
	Elec. Const. Lab 110			T IAKUT 05	nutto	()	(tourity	(10111)	(tot/ann)	(total)
	Existing 82HOH	2 Lamp Magnetic High F96T12/HO/EE Lamp			4 227	300	22.70	0.908	184.80	0.62
	Proposed N82HSPI	2 Lamp Quicktronic H FO32T8/841/XPS/EC			4 73	300	7.30	0.292		
10	Location:		New Fixture	# of	Average	Usage	KWH	KW	KWH	KW
	Elec. Const. Lab 110			Fixtures	Watts	(ann.)	(tot/m)	(total)	Saved (tot/ann)	Saved (total)
	Existing 82HOH	2 Lamp Magnetic High F96T12/HO/EE Lamp		2	2 227	1710	711.65	4.994	4476.78	2.62
	Proposed N44HENNCI	4 Lamp Quicktronic H FO32T8/841 XPS/EC		2:	2 108	1710	338.58	2.376		
11	Location:		New Fixture	# of	Average	Usage	KWH	KW	KWH	KW
_	Industrial Elec. Lab 1	11		Fixtures	Watts	(ann.)	(tot/m)	(total)	Saved (tot/ann)	Saved (total)
	Existing 82HOH	2 Lamp Magnetic High F96T12/HO/EE Lamp		20) 227	1710	646.95	4.54	4069.80	2.38
	Proposed N44HENNCI	4 Lamp Quicktronic H FO32T8/841 XPS/EC		2) 108	1710	307.80	2.16		
12	Location:		New Fixture	# of	Average		KWH	KW	KWH	KW
	Industrial Elec. Lab 1	11		Fixtures	Watts	(ann.)	(tot/m)	(total)	Saved (tot/ann)	Saved (total)
	Existing 82HOH	2 Lamp Magnetic High F96T12/HO/EE Lamp		1	3 227	300	45.40	1.816	369.60	1.23
	Proposed N82HSPI	2 Lamp Quicktronic H FO32T8/841/XPS/EC		1	3 73	300	14.60	0.584		
13	Location:		New Fixture	# of	Average		KWH	KW	KWH	KW
	Computer Elec. Lab 1	12		Fixtures	Watts	(ann.)	(tot/m)	(total)	Saved (tot/ann)	Saved (total)
	Existing 82HOH	2 Lamp Magnetic High F96T12/HO/EE Lamp		20) 227	1710	646.95	4.54	4069.80	2.38
	Proposed N44HENNCI	4 Lamp Quicktronic H FO32T8/841 XPS/EC		2) 108	1710	307.80	2.16		

							Project IL	2	09	
<u>14</u>	Location:		Install PIR Occ.	# of Fixtures	Average Watts	Usage (ann.)	KWH (tot/m)	KW (total)	KWH Saved	KW Saved
	Baths by Gym		Control						(tot/ann)	(total)
	Existing Switching	Existing switching cor	trols	C	0	0	0.00	0	0.00	0.00
	Proposed OCC-WSD-V	Wall Switch Occupan Lens	cy Sensor w / Vandal	2	0	0	0.00	0	\checkmark	
<u>15</u>	Location:		No Change	# of Fixtures	Average Watts	Usage (ann.)	KWH (tot/m)	KW (total)	KWH Saved	KW Saved
	Baths by Gym				114	2/00	(0.40	0.000	(tot/ann)	(total)
	Existing 44T8	4 Lamp Electronic Bal Lamps	last and 4 FO32 18	2	114	3600	68.40	0.228	410.40	0.00
	Proposed X44T8	Existing 4 Lamp Elect FO32 T8 Lamps	ronic Ballast and 4	2	114	1800	34.20	0.228		
<u>16</u>	Location:		No Change	# of Fixtures	Average	Usage	KWH (tot/m)	KW	KWH	KW Saved
	Baths by Main Lobby	,		Fixiules	Watts	(ann.)	(tot/m)	(total)	Saved (tot/ann)	(total)
	Existing 42TT8	2 Lamp Electronic Bal Lamps	last and 2-FO32T8	4	60	3600	72.00	0.24	384.00	0.00
	Proposed X42T8	Existing 2 Lamp Elect FO32 T8 Lamps	ronic Ballast and 2	4	60	2000	40.00	0.24		
<u>17</u>	Location:		Install PIR Occ.	# of Fixtures	Average Watts	Usage (ann.)	KWH (tot/m)	KW (total)	KWH Saved	KW Saved
	Baths by Main Lobby	,	Control						(tot/ann)	(total)
	Existing Switching	Existing switching cor	trols	C	0	0	0.00	0	0.00	0.00
	Proposed OCC-CM10	Ceiling Mount Occupa	ncy Sensor	2	0	0	0.00	0		
18	Location:		New Fixture	# of	Average	Usage	KWH	KW	KWH	KW
	Main Lobby			Fixtures	Watts	(ann.)	(tot/m)	(total)	Saved (tot/ann)	Saved (total)
	Existing 175WMH	1- 175 watt Metal Hali 175 watt Metal Halide	de 120v. Ballast and 1- Lamp.	8	205	3600	492.00	1.64	3801.60	1.06
	Proposed N42HEHSDI	2 Lamp Quicktronic H FO32T8/841 XPS/EC	E-H Ballast and 2	8	73	3600	175.20	0.584		
<u>19</u>	Location:		Install PIR Occ.		Average	Usage	KWH	KW	KWH	KW
	Baths by Conference	Room	Control	Fixtures	Watts	(ann.)	(tot/m)	(total)	Saved (tot/ann)	Saved (total)
	Existing Switching	Existing switching cor	trols	C	0	0	0.00	0	0.00	0.00
	Proposed OCC-CM10	Ceiling Mount Occupa	ncy Sensor	2	0	0	0.00	0	\checkmark	
20	Location:		No Change	# of	Average	Usage	KWH	KW	KWH	KW
	Baths by Conference	Room		Fixtures	Watts	(ann.)	(tot/m)	(total)	Saved (tot/ann)	Saved (total)
	-	2 Lamp Electronic Bal	last and 2-FO32T8	4	60	3600	72.00	0.24	384.00	0.00
	Existing 42TT8	Lamps								

Project ID 209

							Project ID	2		
<u>21</u>	Location:		New Fixture	# of Fixtures	Average Watts	Usage (ann.)	KWH (tot/m)	KW (total)	KWH Saved	KW Saved
	Hall by 207								(tot/ann)	(total)
	Existing 82HOH	2 Lamp Magnetic High F96T12/HO/EE Lamp	•	1	227	1710	32.35	0.227	263.34	0.15
	Proposed N82HSPI	2 Lamp Quicktronic H FO32T8/841/XPS/EC		1	73	1710	10.40	0.073	\checkmark	
<u>22</u>	Location:		New Fixture	# of Fixtures	Average Watts	Usage (ann.)	KWH (tot/m)	KW (total)	KWH Saved	KW Saved
	Room 207								(tot/ann)	(total)
	Existing 82HOH	2 Lamp Magnetic High F96T12/HO/EE Lamp		6	227	1710	194.09	1.362	1580.04	0.92
	Proposed N82HSPI	2 Lamp Quicktronic H FO32T8/841/XPS/EC		ć	73	1710	62.42	0.438	\checkmark	
<u>23</u>	Location:		New Fixture	# of Fixtures	Average Watts	Usage (ann.)	KWH (tot/m)	KW (total)	KWH Saved	KW Saved
	Room 205			i interes	Indito	()	(county	(10 121)	(tot/ann)	(total)
	Existing 82HOH	2 Lamp Magnetic High F96T12/HO/EE Lamp		ç	227	1710	291.13	2.043	2370.06	1.39
	Proposed N82HSPI	2 Lamp Quicktronic H FO32T8/841/XPS/EC		ç	73	1710	93.62	0.657		
<u>24</u>	Location:		New Fixture	# of Fixtures	Average Watts	Usage (ann.)	KWH (tot/m)	KW (total)	KWH Saved	KW Saved
	Room 204			1	inunio	()	((10 12.)	(tot/ann)	(total)
	Existing 82HOH	2 Lamp Magnetic High		ç	227	1710	291.13	2.043	2370.06	1.39
		F96T12/HO/EE Lamp	S							
	Proposed N82HSPI	F96T12/HO/EE Lamp 2 Lamp Quicktronic H FO32T8/841/XPS/EC	E H Ballast and 2	ç	73	1710	93.62	0.657	\checkmark	
<u>25</u>	Proposed N82HSPI	2 Lamp Quicktronic H	E H Ballast and 2		Average	Usage	KWH	KW	▼ KWH Saved	KW Saved
<u>25</u>	Proposed N82HSPI	2 Lamp Quicktronic H	E H Ballast and 2 O	ç # of	_				KWH	
<u>25</u>	Proposed N82HSPI	2 Lamp Quicktronic H	E H Ballast and 2 O New Fixture Output Ballast and 2	ç # of	Average Watts	Usage (ann.)	KWH	KW	KWH Saved	Saved
<u>25</u>	Proposed N82HSPI Location: Room 206	2 Lamp Quicktronic H FO32T8/841/XPS/EC 2 Lamp Magnetic High	E H Ballast and 2 D New Fixture Output Ballast and 2 s E H Ballast and 2	ç # of Fixtures	Average Watts 227	Usag e (ann.) 1710	KWH (tot/m)	KW (total)	KWH Saved (tot/ann)	Saved (total)
	Proposed N82HSPI Location: Room 206 Existing 82HOH Proposed N82HSPI	2 Lamp Quicktronic H FO32T8/841/XPS/EC 2 Lamp Magnetic High F96T12/HO/EE Lamp 2 Lamp Quicktronic H	E H Ballast and 2 D New Fixture Output Ballast and 2 S E H Ballast and 2 O	g # of Fixtures	Average Watts 227 73	Usage (ann.) 1710 1710	KWH (tot/m) 194.09 62.42	KW (total) 1.362 0.438	KWH Saved (tot/ann) 1580.04	Saved (total) 0.92
<u>25</u> <u>26</u>	Proposed N82HSPI Location: Room 206 Existing 82HOH	2 Lamp Quicktronic H FO32T8/841/XPS/EC 2 Lamp Magnetic High F96T12/HO/EE Lamp 2 Lamp Quicktronic H	E H Ballast and 2 D New Fixture Output Ballast and 2 s E H Ballast and 2	g # of Fixtures	Average Watts 227	Usage (ann.) 1710 1710	KWH (tot/m) 194.09	KW (total) 1.362	KWH Saved (tot/ann) 1580.04	Saved (total)
	Proposed N82HSPI Location: Room 206 Existing 82HOH Proposed N82HSPI Location:	2 Lamp Quicktronic H FO32T8/841/XPS/EC 2 Lamp Magnetic High F96T12/HO/EE Lamp 2 Lamp Quicktronic H	E H Ballast and 2 New Fixture Output Ballast and 2 E H Ballast and 2 O New Fixture	f of Fixtures	Average Watts 227 73 Average Watts	Usage (ann.) 1710 1710 Usage (ann.)	KWH (tot/m) 194.09 62.42 KWH	KW (total) 1.362 0.438 KW	KWH Saved (tot/ann) 1580.04 ✓ KWH Saved	Saved (total) 0.92 KW Saved
	Proposed N82HSPI Location: Room 206 Existing 82HOH Proposed N82HSPI Location: Office	2 Lamp Quicktronic H FO32T8/841/XPS/EC 2 Lamp Magnetic High F96T12/HO/EE Lamp 2 Lamp Quicktronic H FO32T8/841/XPS/EC 4 Lamp Electronic Bal	E H Ballast and 2 New Fixture Output Ballast and 2 E H Ballast and 2 New Fixture ast and 4-FO32 T8 EL Ballast and 2	f of Fixtures # of Fixtures	Average Watts 227 73 Average Watts 114	Usage (ann.) 1710 1710 Usage (ann.) 1400	KWH (tot/m) 194.09 62.42 KWH (tot/m)	KW (total) 1.362 0.438 KW (total)	KWH Saved (tot/ann) 1580.04	Saved (total) 0.92 KW Saved (total)

Lighting Audit Report

Mailman Trades Building

		T /					Project IL) 2	10	
<u>1</u>	Location: Residential Construc	tion Lab	New Fixture	# of Fixtures	Average Watts	Usage (ann.)	KWH (tot/m)	KW (total)	KWH Saved (tot/ann)	KW Saved (total)
	Existing 82HOH	2 Lamp Magnetic High F96T12/HO/EE Lamp		67	227	1710	2167.28	15.209	13531.23	(total) 7.91
	Proposed N4T5HOWG	2 - 2 Lamp T5HO Elec FP54T5HO Lamps		32	228	1710	1039.68	7.296	\checkmark	
2	Location:		New Fixture	# of Fixtures	Average Watts		KWH (tot/m)	KW (total)	KWH Saved	KW
	Stock Room			FIXIULES	Walls	(ann.)	(tot/m)	(total)	(tot/ann)	Saved (total)
	Existing 82SEE	2 Lamp EE Magnetic I Lamps	Ballast and F96T12EE	2	123	1710	35.06	0.246	268.66	0.06
	Proposed N44HEVT	4 Lamp Quicktronic H FO32T8/841 XPS/EC		2	95	800	12.67	0.19	\checkmark	
<u>3</u>	Location:		Install PIR Occ.	# of Fixtures	Average Watts	Usage (ann.)	KWH (tot/m)	KW (total)	KWH Saved	KW Saved
	Stock Room		Control	T IXtures	Watto	(ann.)	(courily	(iotal)	(tot/ann)	(total)
	Existing Switching	Existing switching con	trols	C	0	0	0.00	0	0.00	0.0
	Proposed OCC-CMRB-9	PIR Fixture Mount Oc	cupancy Sensor	1	0	0 0	0.00	0	\checkmark	
<u>4</u>	Location:		New Fixture	# of	Average		KWH	KW	KWH	KW
	Stock Room			Fixtures	Watts	(ann.)	(tot/m)	(total)	Saved (tot/ann)	Saved (total)
	Existing 42SMT8	2 Lamp Electronic Bal Lamps	last and 2-FO32T8	8	60	1710	68.40	0.48	516.80	0.10
	Proposed N44HEVT	4 Lamp Quicktronic H FO32T8/841 XPS/EC		4	95	800	25.33	0.38	\checkmark	
<u>5</u>	Location:		New Fixture	# of Fixtures	Average Watts	Usage (ann.)	KWH (tot/m)	KW (total)	KWH Saved	KW Saved
	Finishing Room								(tot/ann)	(total)
	Existing 43T8LPT	3 Lamp Low Power El FO32 T8 Lamps	ectronic Ballast and 3-	14	76	1710	151.62	1.064	983.44	0.02
	Proposed N44HEVT	4 Lamp Quicktronic H FO32T8/841 XPS/EC		11	95	800	69.67	1.045	\checkmark	
<u>6</u>	Location:		Install PIR Occ.	# of Fixtures	Average Watts	Usage (ann.)	KWH (tot/m)	KW (total)	KWH Saved	KW Saved
	Finishing Room		Control	T IALUTES	Watto	(ann.)	(touriny	(iotal)	(tot/ann)	(total)
		Existing switching con	trole	C	0	0	0.00	0	0.00	0.00
	Existing Switching	Existing switching con	luois	ŭ		-	0.00		0.00	

Project ID 210

							Project ID	2	10	
<u>7</u>	Location:		New Fixture	# of Fixtures	Average Watts	Usage (ann.)	KWH (tot/m)	KW (total)	KWH Saved	KW Saved
	Classroom				inunio	()	((10 12.)	(tot/ann)	(total)
	Existing 43T8LPT	3 Lamp Low Power Ele FO32 T8 Lamps	ectronic Ballast and 3-	12	76	1710	129.96	0.912	1121.52	0.47
	Proposed N41HEHTDRW	2 Lamp Electronic HE FO32/841/XPS/ECO		6	73	1000	36.50	0.438		
<u>8</u>	Location:		Install PIR Occ. Control	# of Fixtures	Average Watts	Usage (ann.)	KWH (tot/m)	KW (total)	KWH Saved	KW Saved
	Classroom								(tot/ann)	(total)
	Existing Switching	Existing switching con	trols	0	0 0	0	0.00	0	0.00	0.00
	Proposed OCC-CMRB-9	PIR Fixture Mount Occ	cupancy Sensor	1	0	0	0.00	0		
<u>9</u>	Location:		New Fixture	# of Fixtures	Average Watts	Usage (ann.)	KWH (tot/m)	KW (total)	KWH Saved	KW Saved
	Plumbing & Heating	Lab		rixiures	Walls	(ann.)	(tot/m)	(total)	(tot/ann)	(total)
	Existing 82HOH	2 Lamp Magnetic High F96T12/HO/EE Lamps		16	227	1710	517.56	3.632	1716.84	1.00
	Proposed N44HEHNCI	4 Lamp Quicktronic HI FO32T8/841 XPS/EC		18	146	1710	374.49	2.628		
10	Location:		New Fixture	# of	Average	Usage	KWH	KW	KWH	KW
	Classroom			Fixtures	Watts	(ann.)	(tot/m)	(total)	Saved (tot/ann)	Saved (total)
	Existing 43T8LPT	3 Lamp Low Power Ele FO32 T8 Lamps	ectronic Ballast and 3-	12	. 76	1710	129.96	0.912	1121.52	0.47
	Proposed N41HEHTDRW	2 Lamp Electronic HE FO32/841/XPS/ECO 1		6	73	1000	36.50	0.438	\checkmark	
<u>11</u>	Location:		Install PIR Occ.	# of Fixtures	Average Watts	Usage (ann.)	KWH (tot/m)	KW (total)	KWH Saved	KW Saved
	Classroom		Control	TIXIUICS	watts	(ann.)	(totriny	(iotal)	(tot/ann)	(total)
	Existing Switching	Existing switching con	trols	0	0	0	0.00	0	0.00	0.00
	Proposed OCC-CMRB-9	PIR Fixture Mount Occ	cupancy Sensor	1	0	0	0.00	0	\checkmark	
12	Location:		New Fixture	# of	Average	Usage	KWH	KW	KWH	KW
	Automotive Technolo			Fixtures	Watts	(ann.)	(tot/m)	(total)	Saved (tot/ann)	Saved (total)
	Existing 82HOH	2 Lamp Magnetic High F96T12/HO/EE Lamps		35	227	1710	1132.16	7.945	4847.85	2.84
	Proposed N44HEHNCI	4 Lamp Quicktronic HI FO32T8/841 XPS/EC		35	146	1710	728.18	5.11		
13	Location:		Install PIR Occ.	# of	Average	Usage	KWH	KW	KWH	KW
	Automotive Technolo		Control	Fixtures	Watts	(ann.)	(tot/m)	(total)	Saved	Saved
		gy Lab				0	0.00	0	(tot/ann) 0.00	(total) 0.00
	Existing Switching	Existing switching con		0	0 0	0	0.00	0		0.00
	Proposed OCC-CMRB-9	PIR Fixture Mount Occ	cupancy Sensor	6	0	0	0.00	0		

Page 2 of 4

210 Proiect ID

						-	Project ID) 2	10	
<u>14</u>	Location:		New Fixture	# of Fixtures	Average Watts	Usage (ann.)	KWH (tot/m)	KW (total)	KWH Saved	KW Saved
	Automotive Technolo	gy Lab		TIMUTES	watts	(ann.)	(tourity	(iotal)	(tot/ann)	(total)
	Existing 82HOH	2 Lamp Magnetic Higl F96T12/HO/EE Lamp	h Output Ballast and 2 os	18	8 227	1710	582.26	4.086	4459.86	2.14
	Proposed N44HENNCI	4 Lamp Quicktronic H FO32T8/841 XPS/EC		18	8 108	1300	210.60	1.944	\checkmark	
<u>15</u>	Location:		Install PIR Occ. Control	# of Fixtures	Average Watts	Usage (ann.)	KWH (tot/m)	KW (total)	KWH Saved	KW Saved
	Stock/ Core Storage								(tot/ann)	(total)
	Existing Switching	Existing switching cor	ntrols	0) 0	0	0.00	0	0.00	0.00
	Proposed OCC-CMRB-9	PIR Fixture Mount Oc	cupancy Sensor	3	8 0	0 0	0.00	0	\checkmark	
<u>16</u>	Location:		New Fixture	# of Fixtures	Average Watts	Usage (ann.)	KWH (tot/m)	KW (total)	KWH Saved	KW Saved
	Stock/ Core Storage					. ,	. ,	. ,	(tot/ann)	(total)
	Existing 82HOH	2 Lamp Magnetic Higl F96T12/HO/EE Lamp	h Output Ballast and 2 os	8	8 227	1710	258.78	1.816	2170.96	0.65
	Proposed N44HEHNCI	4 Lamp Quicktronic H FO32T8/841 XPS/EC		8	8 146	800	77.87	1.168	\checkmark	
<u>17</u>	Location:		New Fixture	# of Fixtures	Average Watts	Usage (ann.)	KWH (tot/m)	KW (total)	KWH Saved	KW Saved
	Parts Room								(tot/ann)	(total)
	Existing 82HOH	2 Lamp Magnetic Higl F96T12/HO/EE Lamp	h Output Ballast and 2 os	1	227	1710	32.35	0.227	138.51	0.08
	Proposed N44HEHNCI	4 Lamp Quicktronic H FO32T8/841 XPS/EC		1	146	1710	20.81	0.146	\checkmark	
18	Location:		Install PIR Occ.	# of	Average	Usage	KWH	KW	KWH	KW
	Classroom		Control	Fixtures	Watts	(ann.)	(tot/m)	(total)	Saved (tot/ann)	Saved (total)
	Existing Switching	Existing switching cor	ntrols	0	0 0	0	0.00	0	0.00	0.00
	Proposed OCC-CMRB-9	PIR Fixture Mount Oc	cupancy Sensor	1	0	0	0.00	0	\checkmark	
19	Location:		New Fixture		Average		KWH	KW	KWH	KW
	Classroom			Fixtures	Watts	(ann.)	(tot/m)	(total)	Saved (tot/ann)	Saved (total)
	Existing 43T8LPT	3 Lamp Low Power El FO32 T8 Lamps	ectronic Ballast and 3-	12	2 76	1710	129.96	0.912	1103.52	0.46
	Proposed N41HEHT3RW	3 Lamp Electronic HE FO32/841/XPS/ECO		4	114	1000	38.00	0.456		
<u>20</u>	Location:		New Fixture	# of Fixtures	Average Watts	Usage (ann.)	KWH (tot/m)	KW (total)	KWH Saved	KW Saved
	Diesel / Hydraulics T	ech. Lab		T IAGE CO	natto	((county)	(county	(tot/ann)	(total)
	Existing 82HOH	2 Lamp Magnetic Higl F96T12/HO/EE Lamp	h Output Ballast and 2 os	30) 227	1710	970.43	6.81	4155.30	2.43
	Proposed N44HEHNCI 4 Lamp Quicktronic F FO32T8/841 XPS/E(

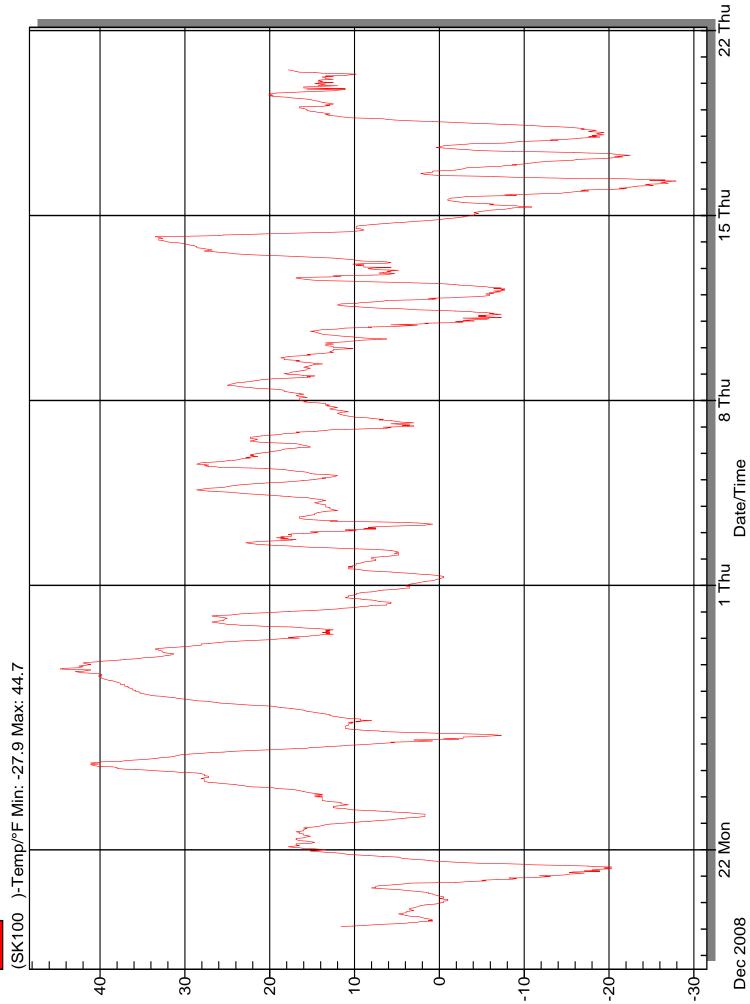
							Project ID	2	10	
<u>21</u>	Location: Diesel / Hydraulics Te	ech. Lab	New Fixture	# of Fixtures	Average Watts	Usage (ann.)	KWH (tot/m)	KW (total)	KWH Saved (tot/ann)	KW Saved (total)
	Existing 400MHB	400 W att Metal Halide 400 W att MH W att La		2	2 460	1710	131.10	0.92	824.22	0.48
	Proposed N6T8HOWG	6 Lamp T8HL Electro FO32T8/850/XPS Lan		2	2 219	1710	62.42	0.438		
<u>22</u>	Location:		New Fixture	# of Fixtures	Average Watts	Usage (ann.)	KWH (tot/m)	KW (total)	KWH Saved	KW Saved
	Parts Room Existing 82HOH	2 Lamp Magnetic High F96T12/HO/EE Lamp		3	8 227	1710	97.04	0.681	(tot/ann) 415.53	(total) 0.24
	Proposed N44HEHNCI	4 Lamp Quicktronic HI FO32T8/841 XPS/EC		3	8 146	1710	62.42	0.438		
<u>23</u>	Location: Classroom		Install PIR Occ. Control	# of Fixtures	Average Watts	Usage (ann.)	KWH (tot/m)	KW (total)	KWH Saved (tot/ann)	KW Saved (total)
	Existing Switching	Existing switching con	trols	C) 0	0	0.00	0	0.00	0.00
	Proposed OCC-CMRB-9	PIR Fixture Mount Oc	cupancy Sensor	1	0	0	0.00	0		
<u>24</u>	Location: Classroom		New Fixture	# of Fixtures	Average Watts	Usage (ann.)	KWH (tot/m)	KW (total)	KWH Saved (tot/ann)	KW Saved (total)
	Existing 43T8LPT	3 Lamp Low Power Ele FO32 T8 Lamps	ectronic Ballast and 3-	12	2 76	1710	129.96	0.912	1103.52	0.46
	Proposed N41HEHT3RW	3 Lamp Electronic HE FO32/841/XPS/ECO		4	114	1000	38.00	0.456	\checkmark	
<u>25</u>	Location: Loft		New Fixture	# of Fixtures	Average Watts	Usage (ann.)	KWH (tot/m)	KW (total)	KWH Saved (tot/ann)	KW Saved (total)
	Existing 82HOH	2 Lamp Magnetic High F96T12/HO/EE Lamp		3	8 227	1710	97.04	0.681	1067.31	0.36
	Proposed N44HENNCI	4 Lamp Quicktronic HI FO32T8/841 XPS/EC	E N Ballast and 4	3	8 108	300	8.10	0.324		
26	L ocation:			# of	Auorago	lleana		K/W		K/W

<u>26</u>	Loft		Install PIR Occ.	# of Fixtures		Usage (ann.)	KWH (tot/m)	KW (total)	KWH Saved	KW Saved
			Control	FIXIULES	walls	(ann.)	(ioviti)	(iotal)	(tot/ann)	(total)
	Existing Switching			C	0	0	0.00	0	0.00	0.00
	Proposed OCC-CMRB-9 PIR Fixture Mount Occ		cupancy Sensor	1	0	0	0.00	0	\checkmark	

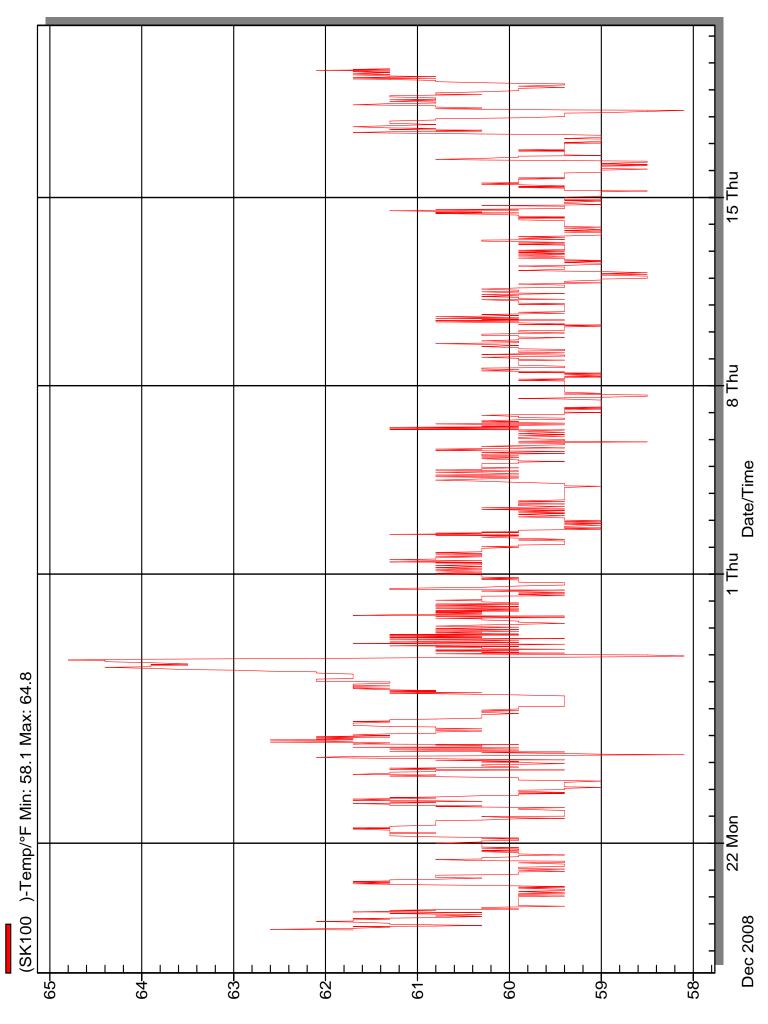
Lighting Audit Report

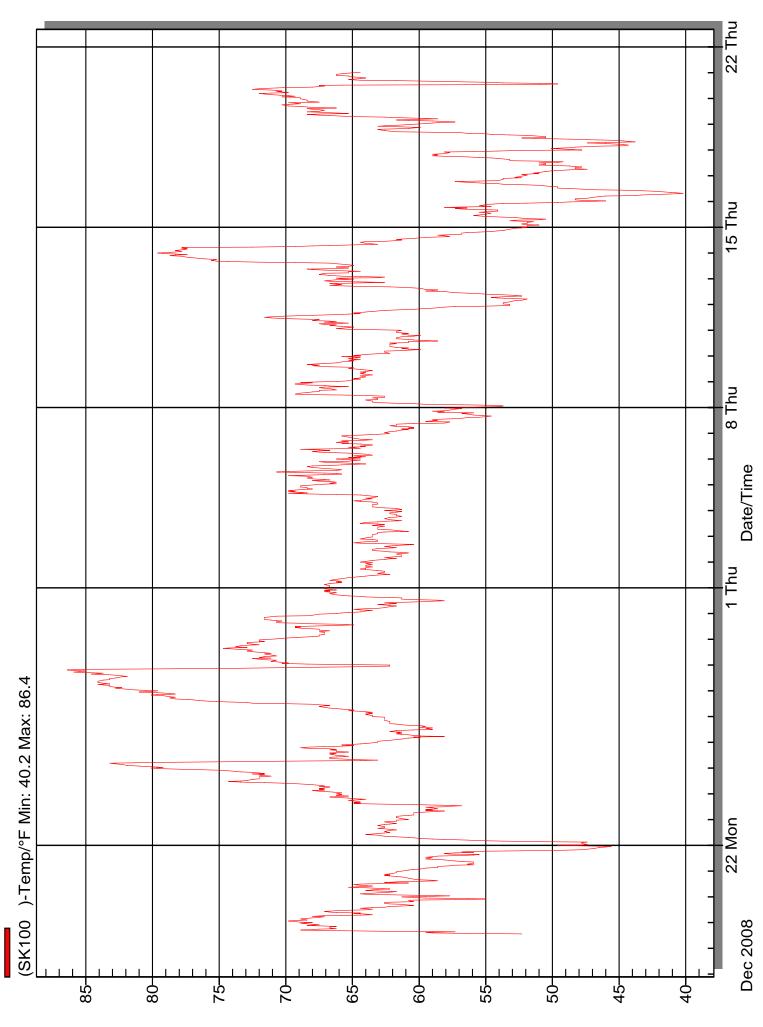
Reed Dining Commons

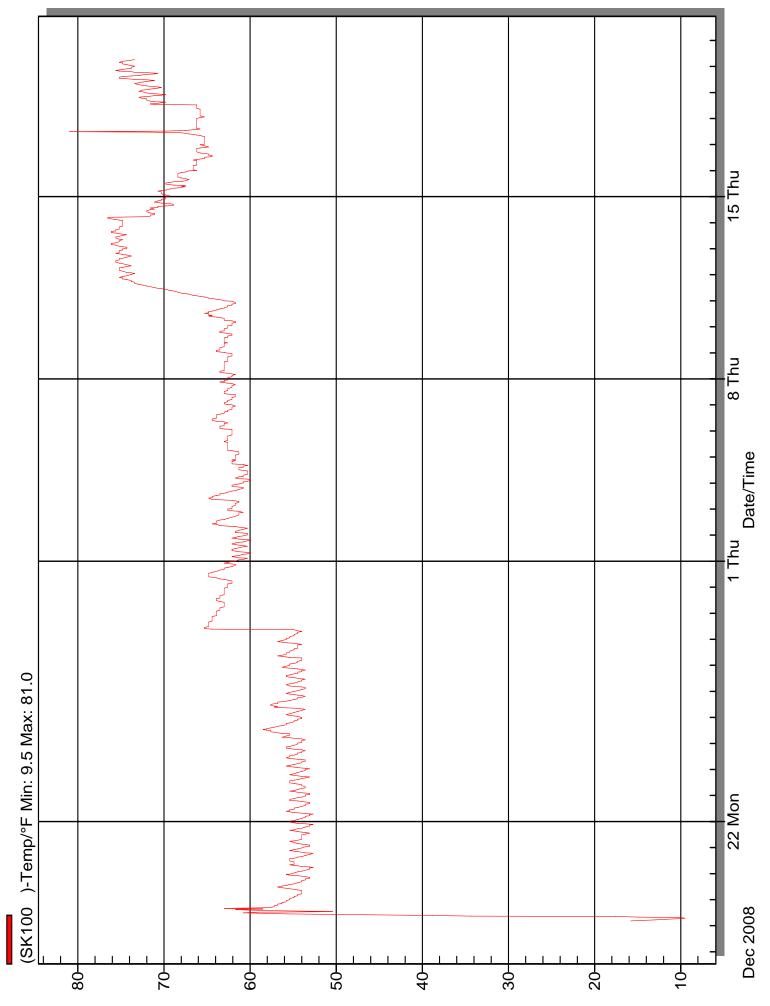
	· · ·						Project IL	2	11	
<u>1</u>	Location:		New Fixture	# of Fixtures	Average Watts	Usage (ann.)	KWH (tot/m)	KW (total)	KWH Saved	KW Saved
	Dining Area			FIXIULES	walls	(ann.)	(louiny	(iutal)	(tot/ann)	(total)
	Existing 175WMH	1- 175 watt Metal Halio 175 watt Metal Halide	de 120v. Ballast and 1- Lamp.	10	205	4200	717.50	2.05	5544.00	1.32
	Proposed N42HEHSDI	2 Lamp Quicktronic H FO32T8/841 XPS/EC		10	73	4200	255.50	0.73		
<u>2</u>	Location:		New Fixture	# of Fixtures	Average Watts	Usage (ann.)	KWH (tot/m)	KW (total)	KWH Saved	KW Saved
	Dining Area					. ,	. ,		(tot/ann)	(total)
	Existing 82HOH	2 Lamp Magnetic High F96T12/HO/EE Lamp		8	227	4200	635.60	1.816	3729.60	0.89
	Proposed N1T5HOS	1- Lamp T5HO Electro FP54T5HO Lamps	onic Ballasts and 1	16	58	4200	324.80	0.928		
3	Location:		Install PIR Occ.		Average	Usage	KWH	KW	KWH	KW
	Baths		Control	Fixtures	Watts	(ann.)	(tot/m)	(total)	Saved (tot/ann)	Saved (total)
	Existing Switching	Existing switching con	trols	0	0	0	0.00	0	0.00	0.00
	Proposed OCC-CM10 Ceiling Mount Occupa	ncy Sensor	2	0	0	0.00	0	\checkmark		

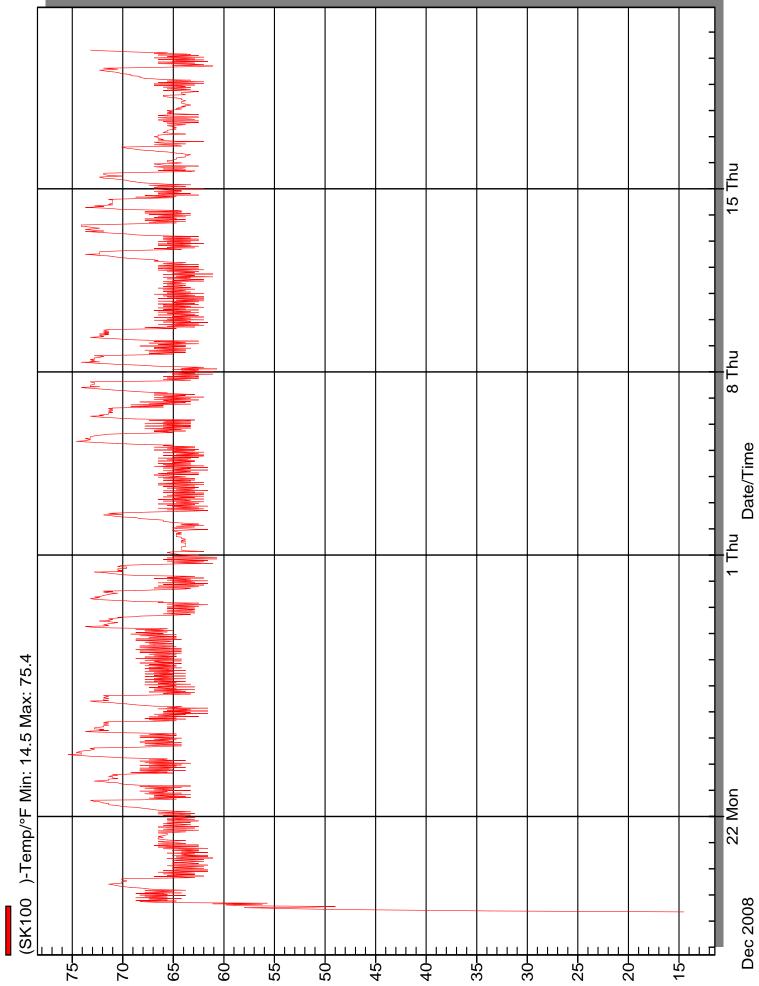

<u>4</u>	Location:		No Change	# of Fixtures	Average Watts	Usage (ann.)	KWH (tot/m)	KW (total)	KWH Saved	KW Saved
	Baths			TIALUTES	watts	(ann.)	(tourity	(iotal)	(tot/ann)	(total)
	Existing 42TT8	2 Lamp Electronic Ballast and 2-FO32T8 Lamps		(60	2500	75.00	0.36	468.00	0.00
	Proposed X42T8	Existing 2 Lamp Electronic Ballast and 2 FO32 T8 Lamps		Ć	60	1200	36.00	0.36	\checkmark	

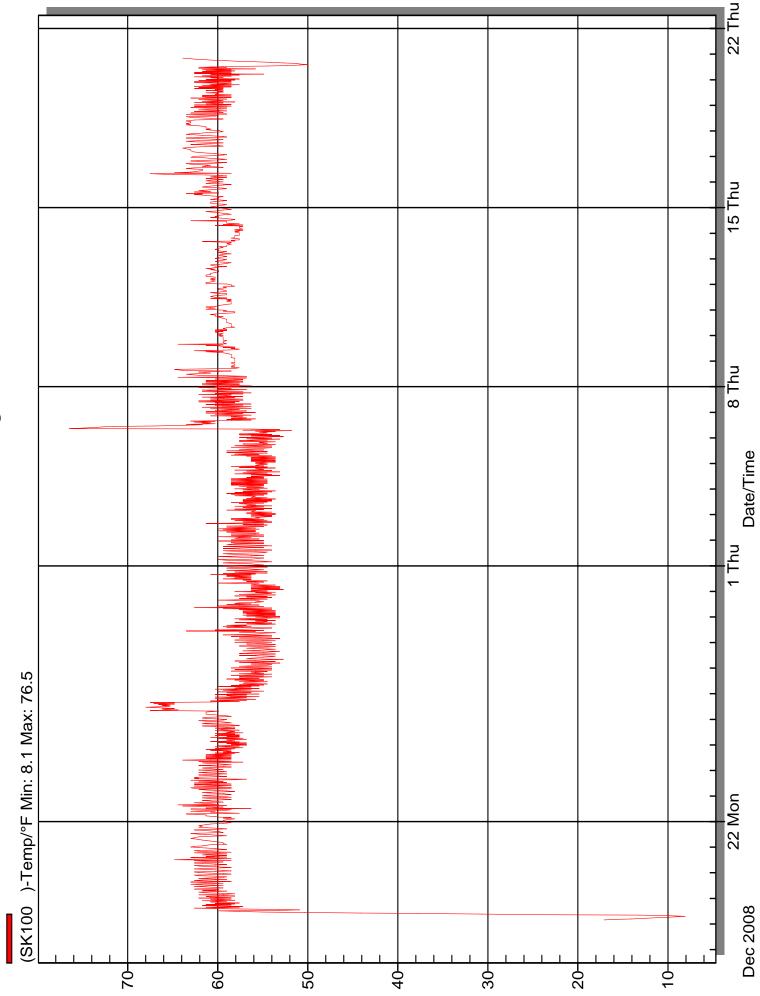
Appendix B Temperature Logger Data

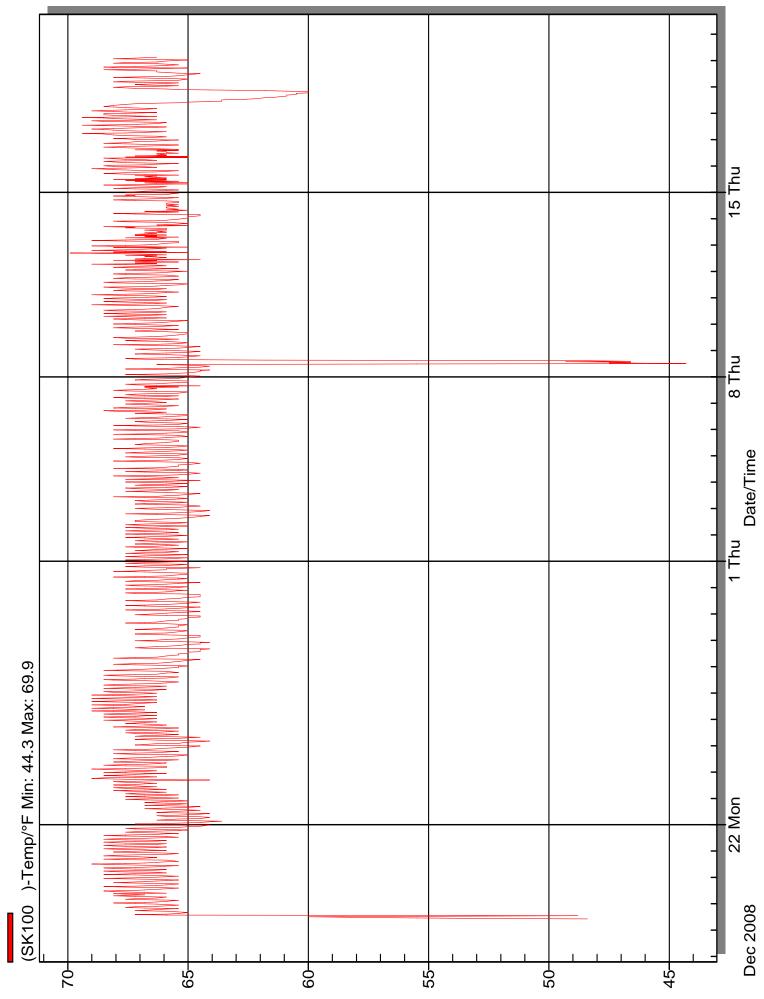

The temperature logger data shows the temperature of the location the logger was in and during the logging period. The temperature logger data that is taken in rooms helps determine existing occupied and unoccupied temperatures. Other temperature logs, such as mixed air (MA) loggers, help determine how the equipment is operating and how much outside air that equipment is bringing in. These values are listed in the Existing Equipment Schedules and Setpoints in the report. The logger data is not always taken as an absolute to determining the setpoints, setback and percent outside air. Onsite observations, on-time logger data and the energy balance of the building also influence these values used for the energy calculations. All of the data is used to interpret the equipment's operating parameters.

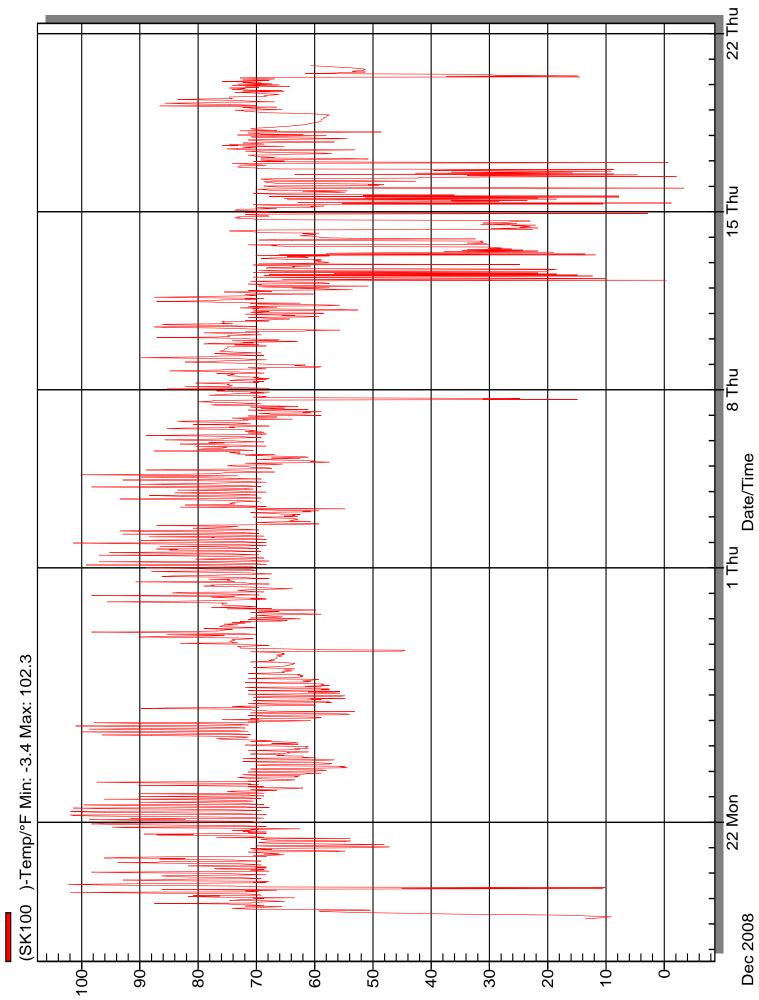

Andrews - HV - MA


Dec 2008

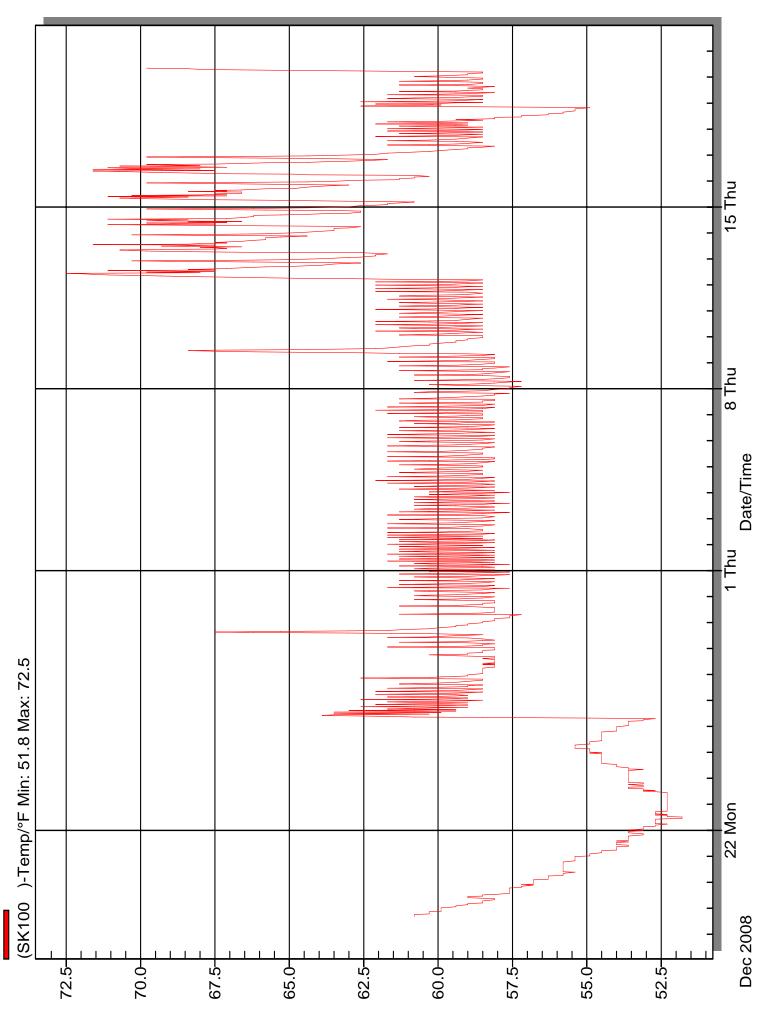




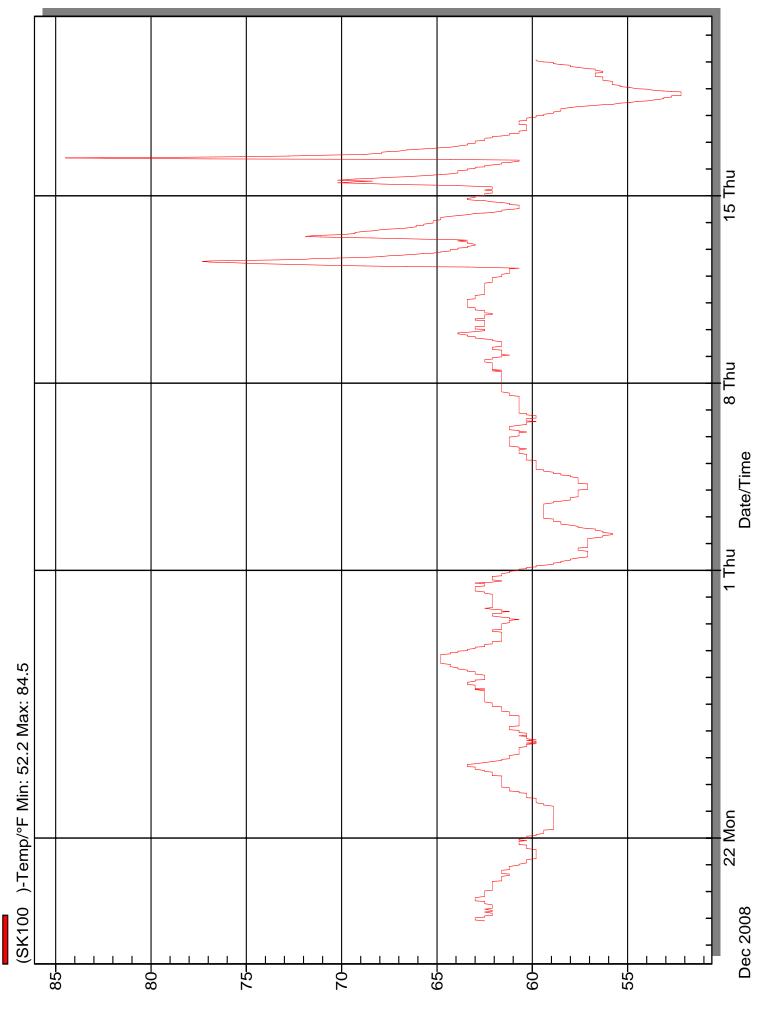

Penobscot Hall - SP

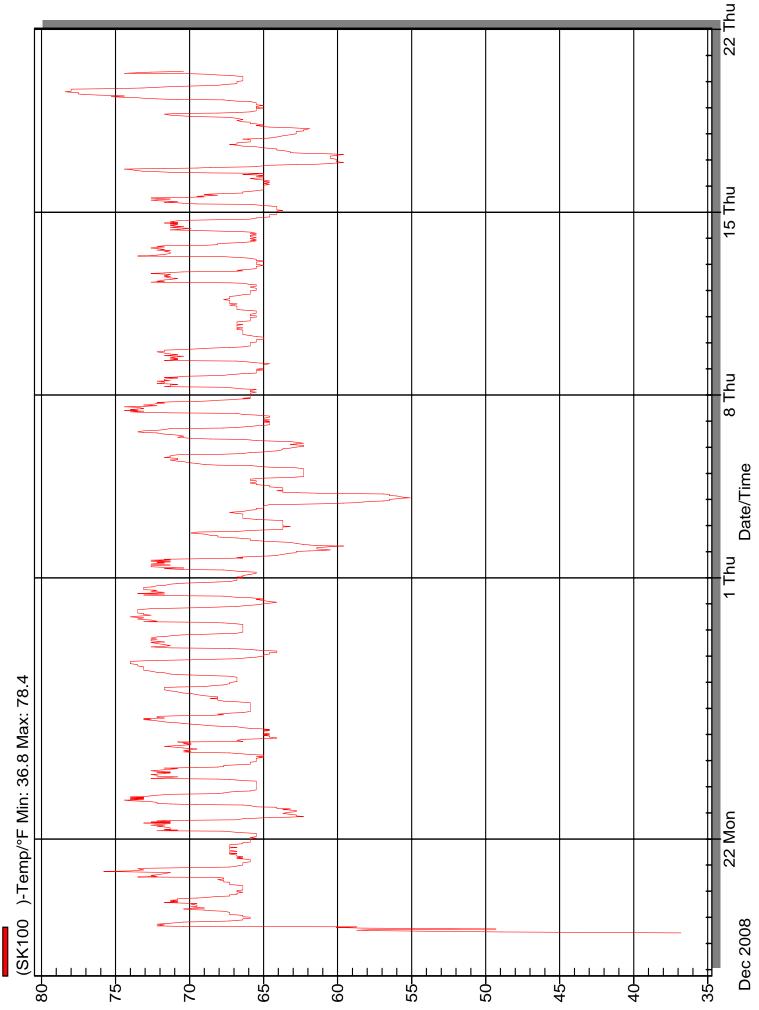

Maintenance Shop - SP

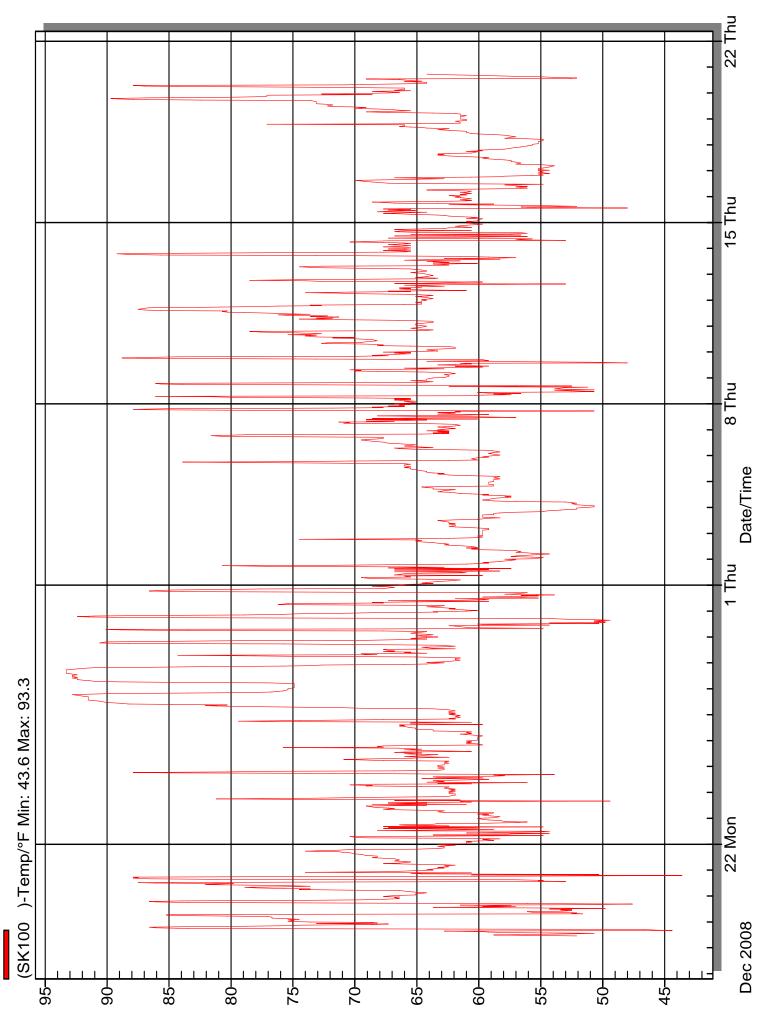
Maintenance Garage - SP

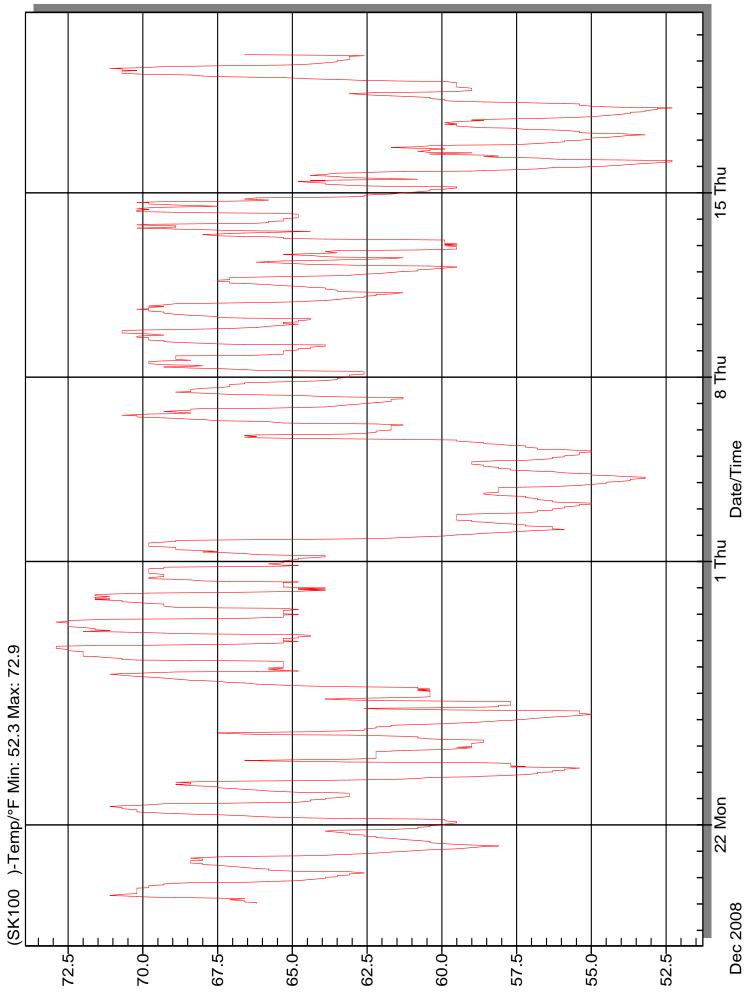


Mailman - HV Diesel - SP

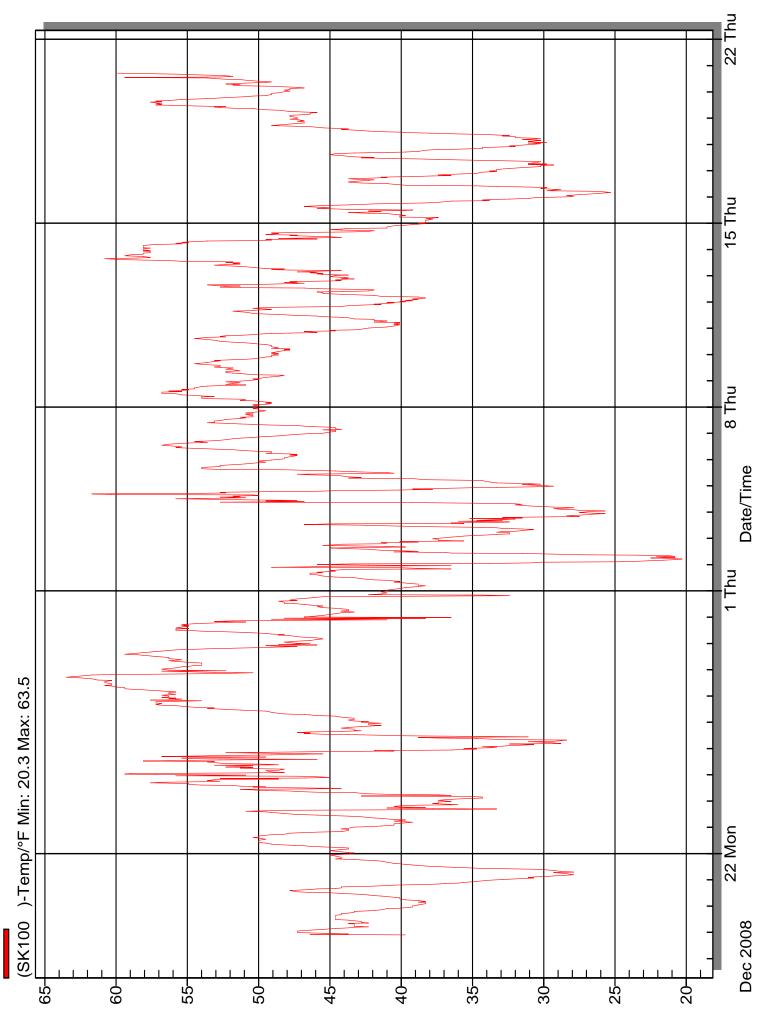


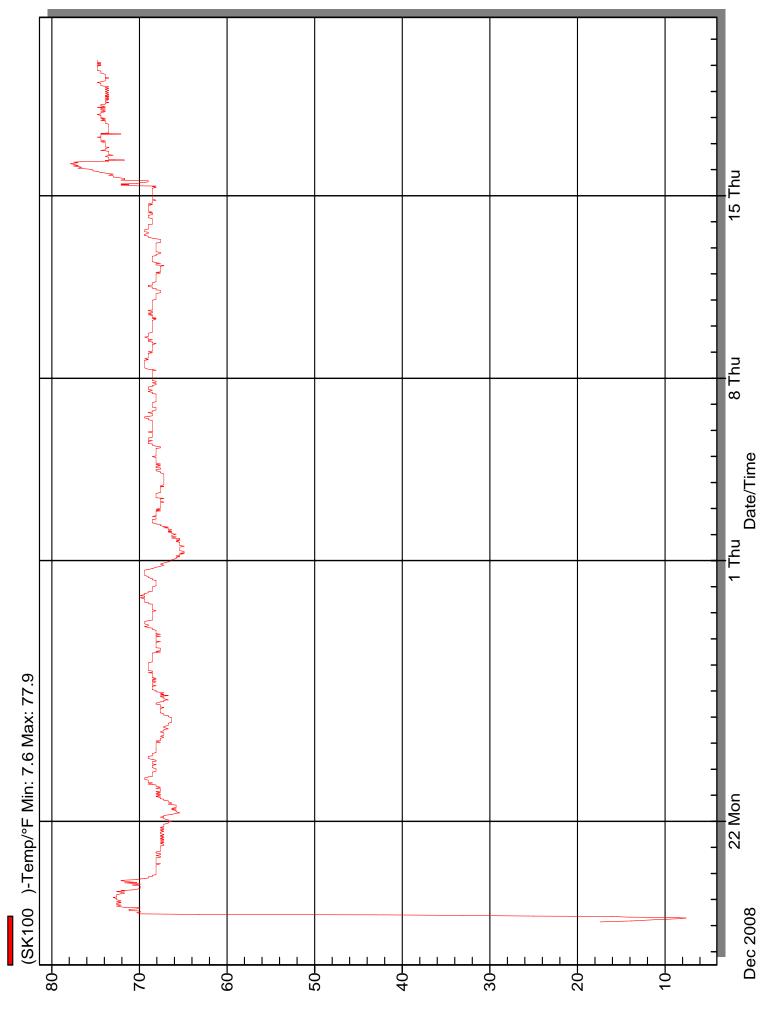

Mailman - HV Diesel - MA

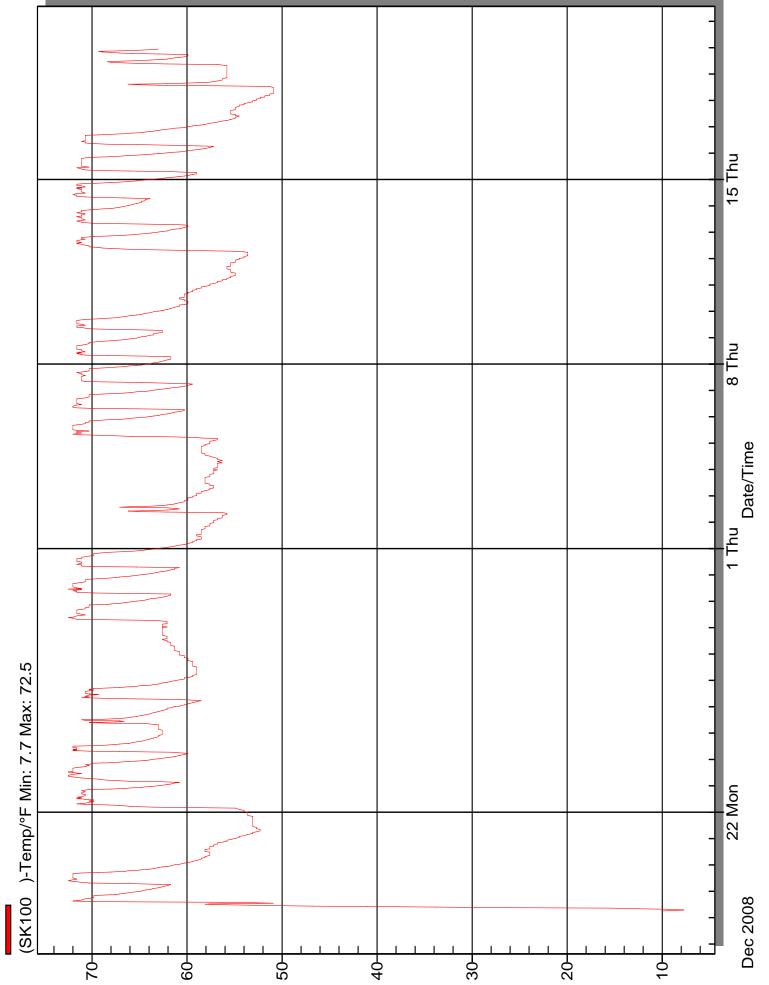


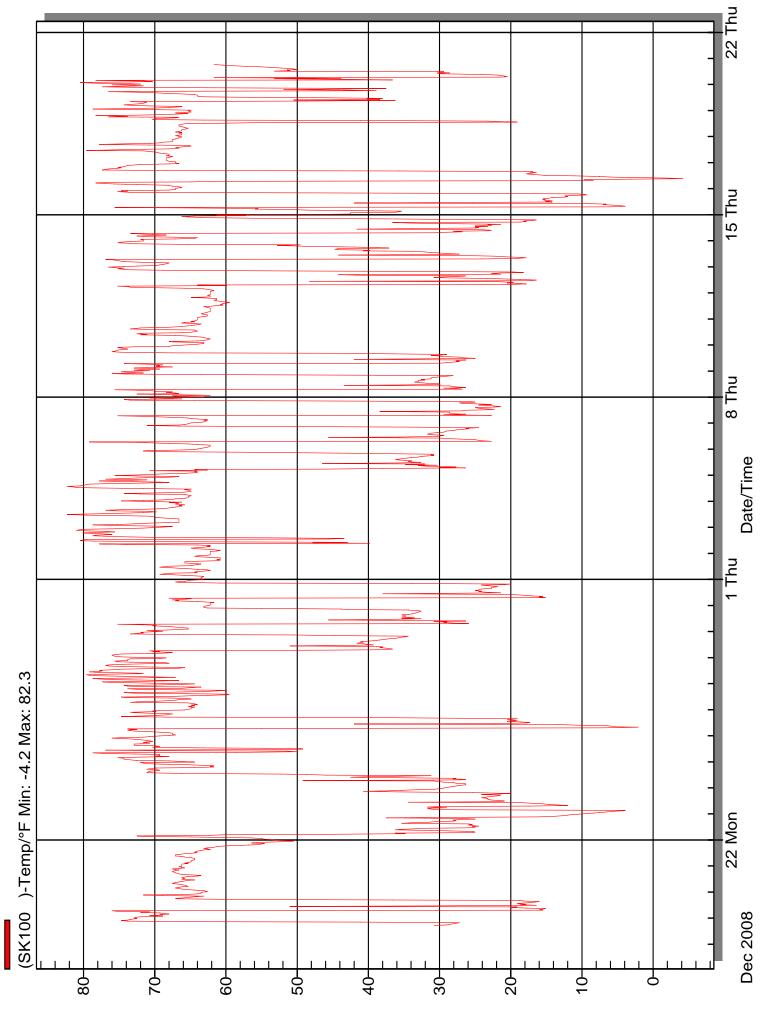


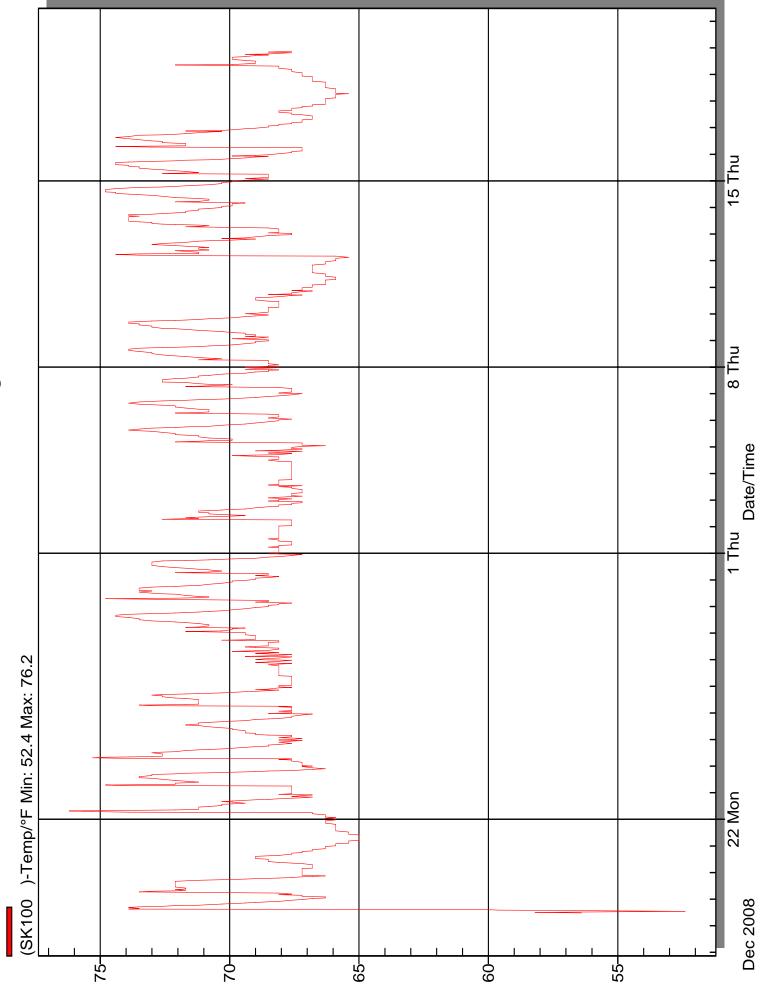
Commons - UV Conference - SP





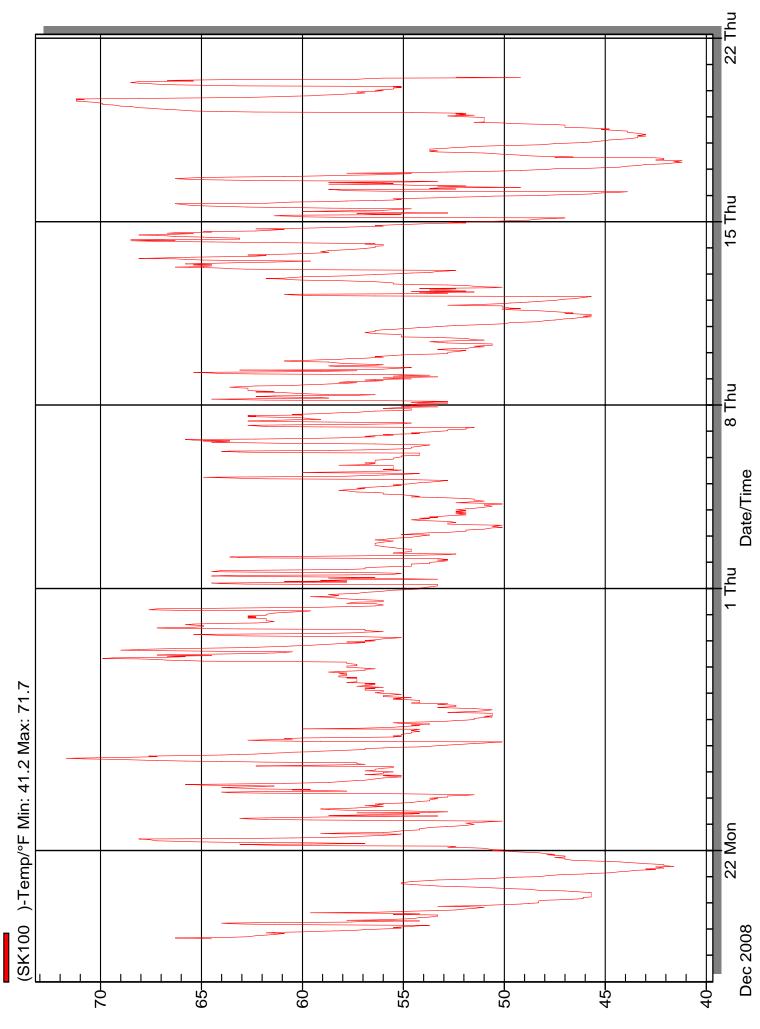


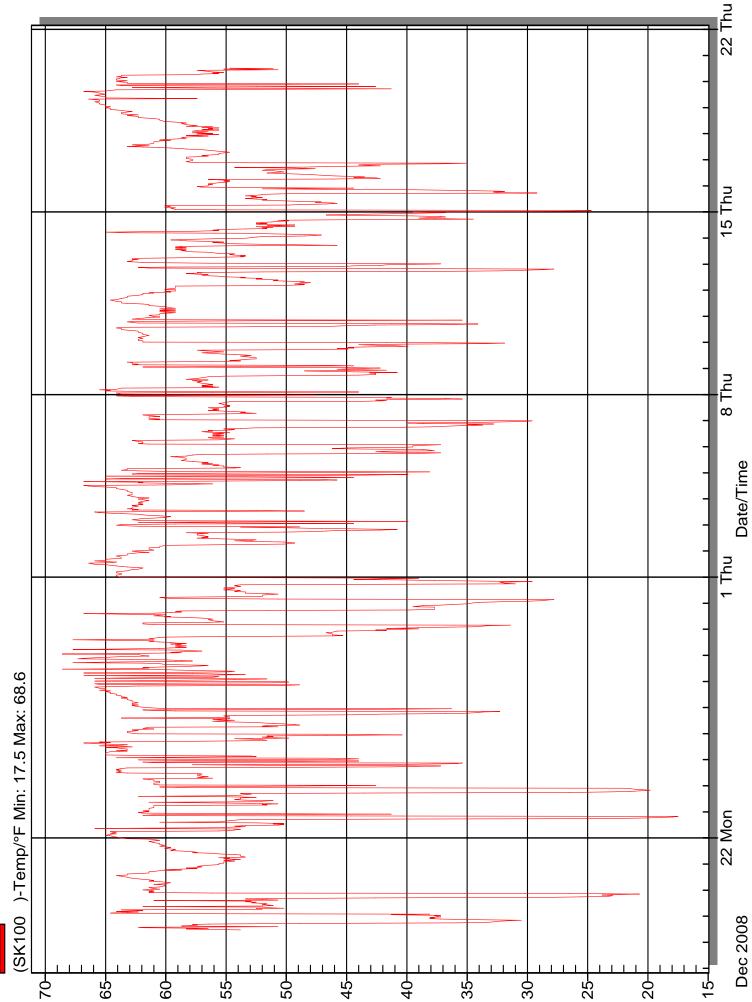


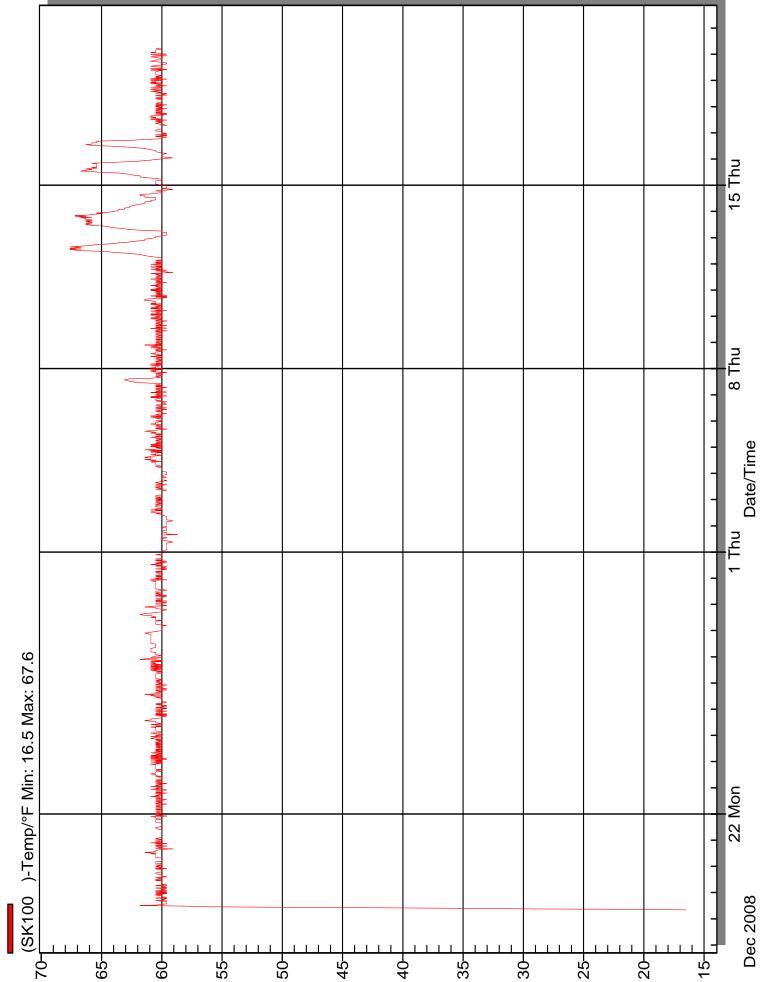

Chrsitie - HRU - SP

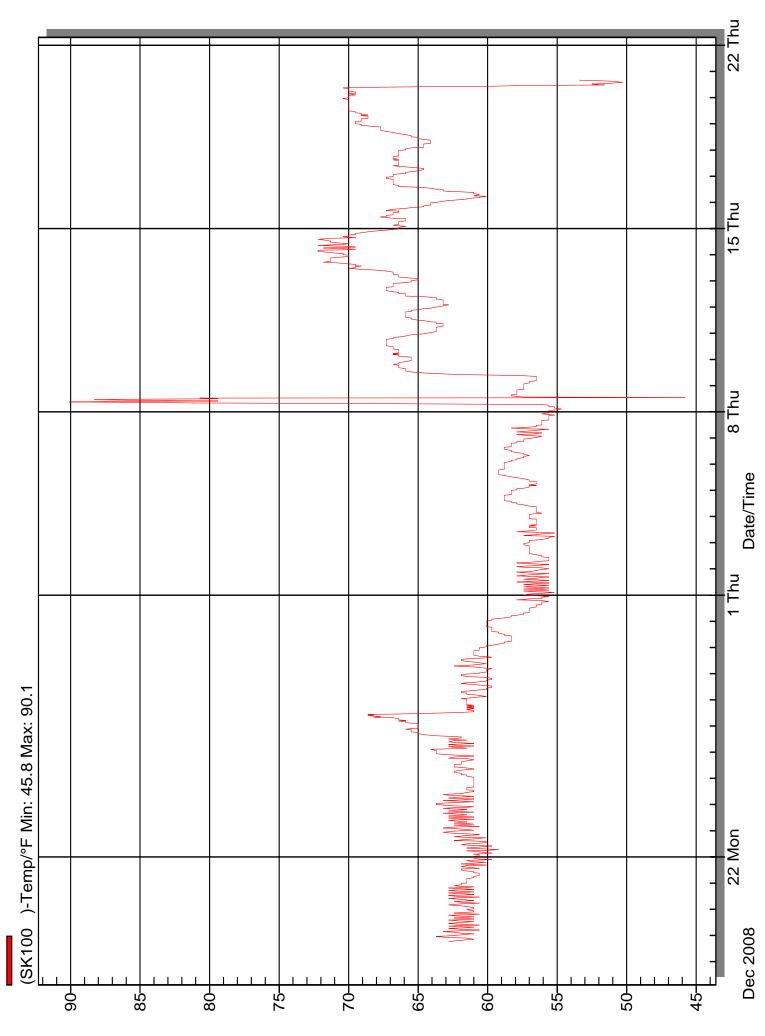

Christie - RTU Library - SP

Christie - RTU Library - MA

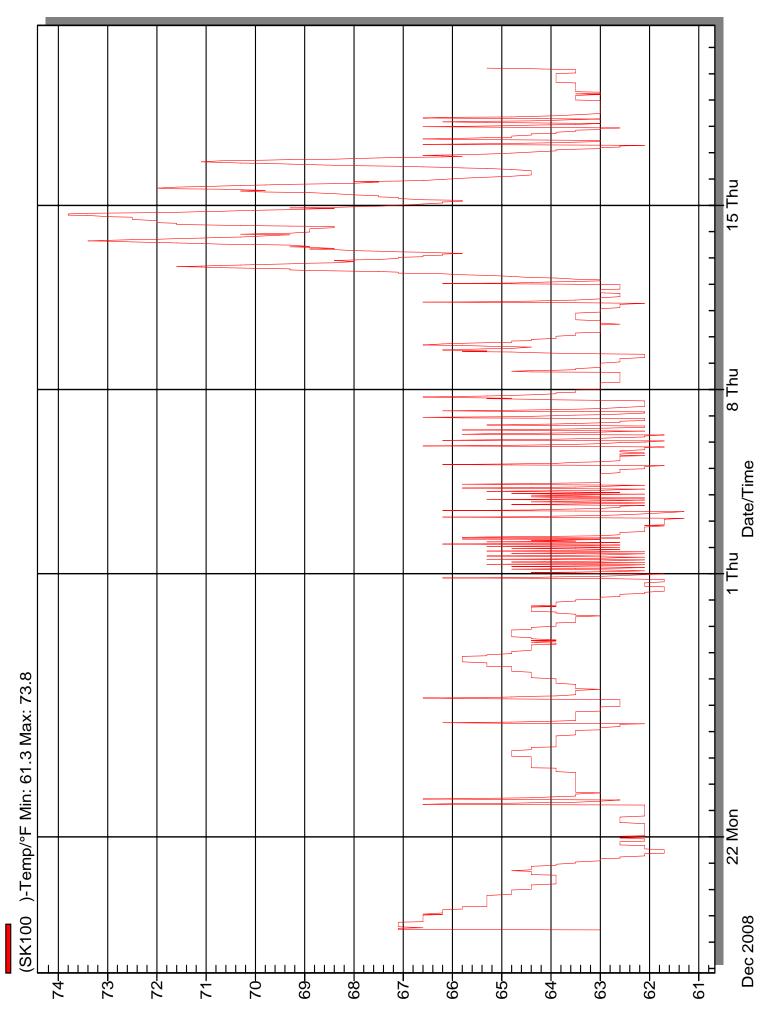


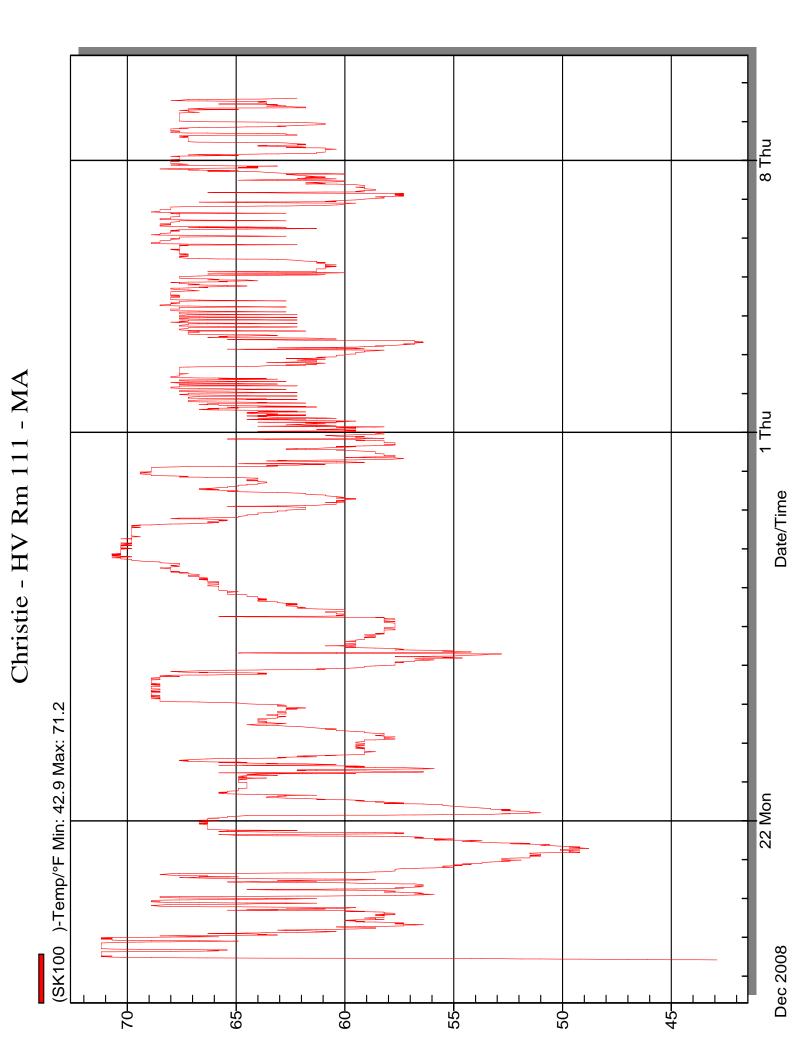

Christie - RTU Continuing Ed - SP


Christie - RTU Continuing Ed - MA

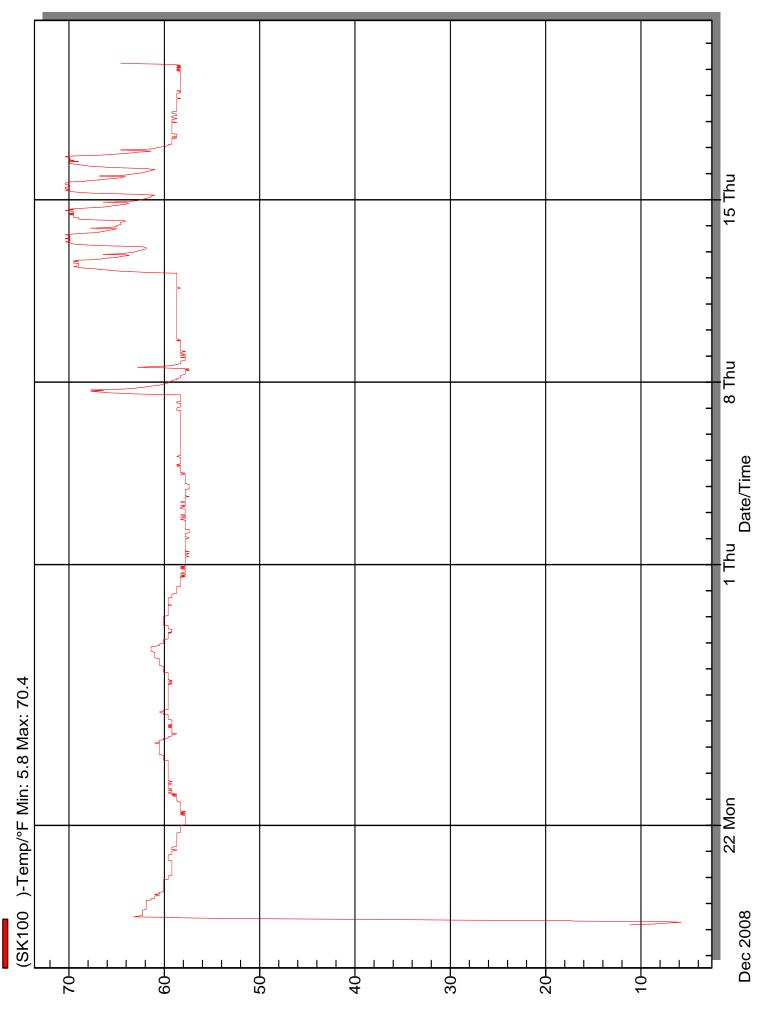


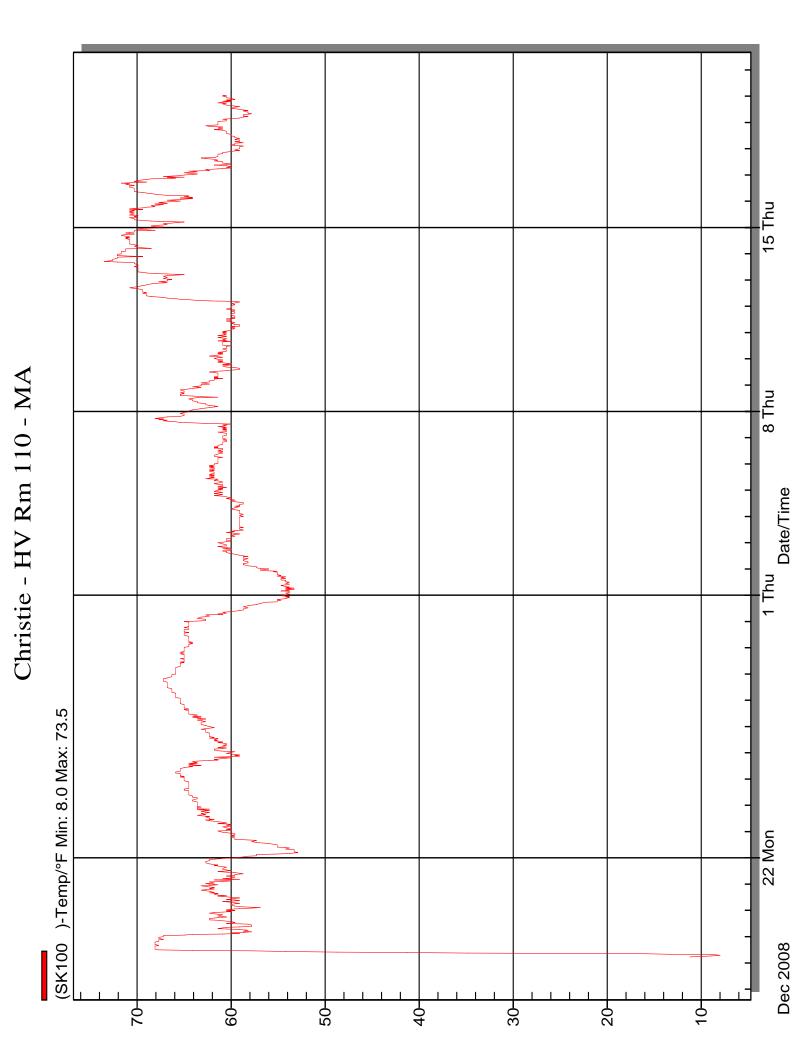
Christie - RTU Conference Room - MA

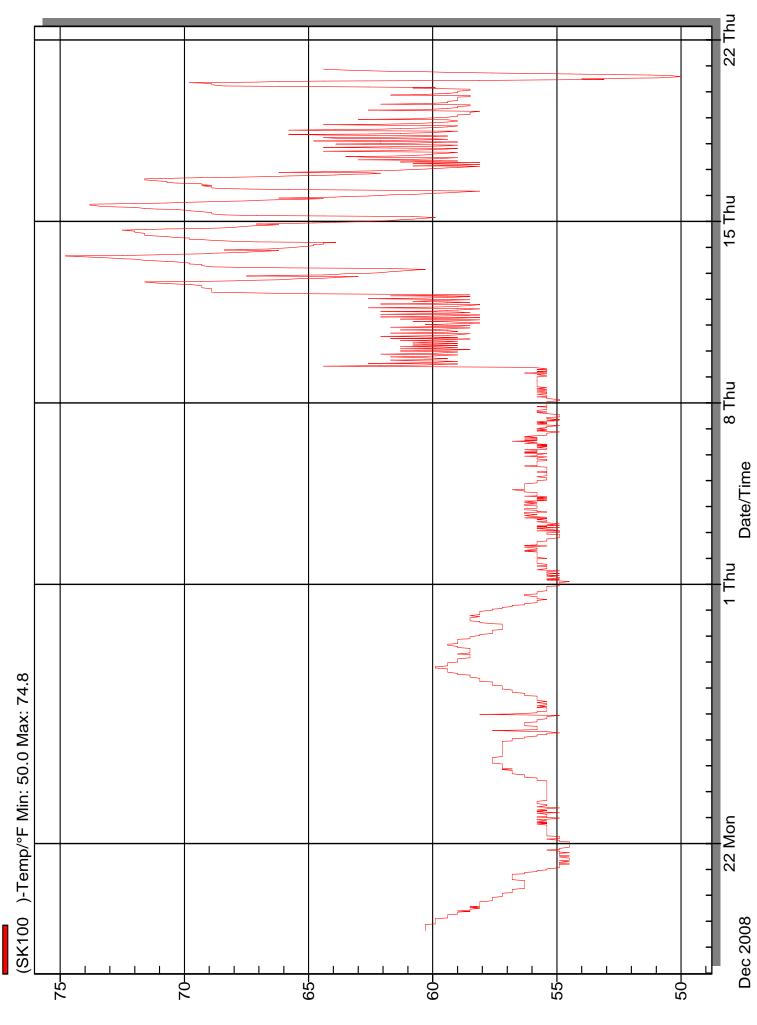


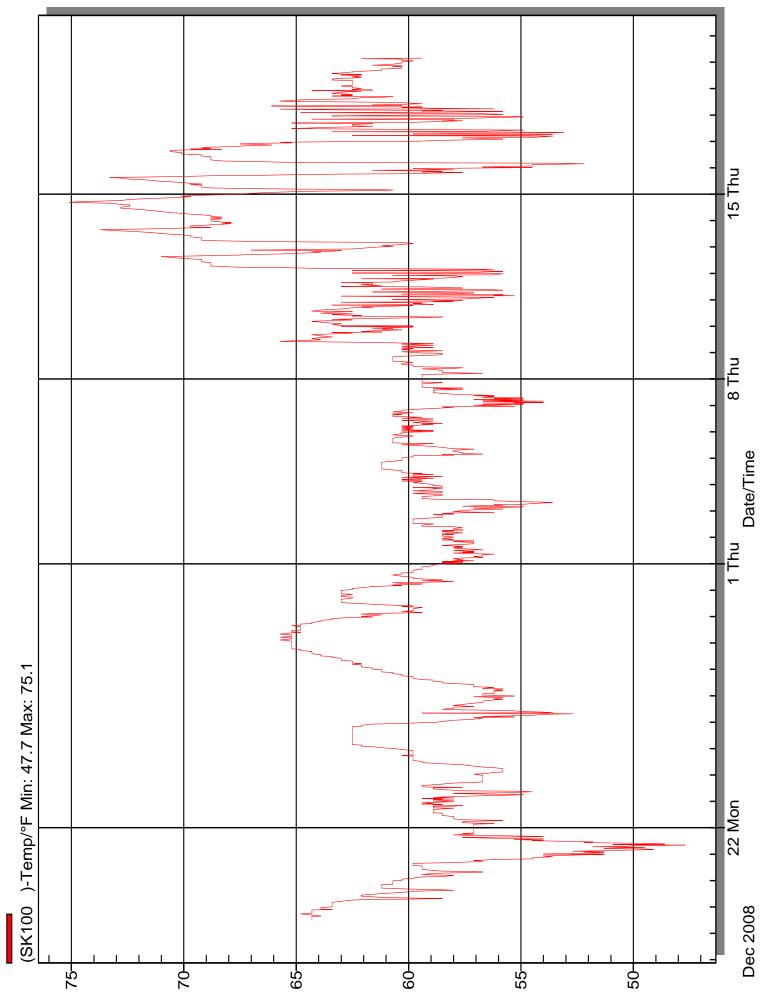

Christie - Rm 214 - SP

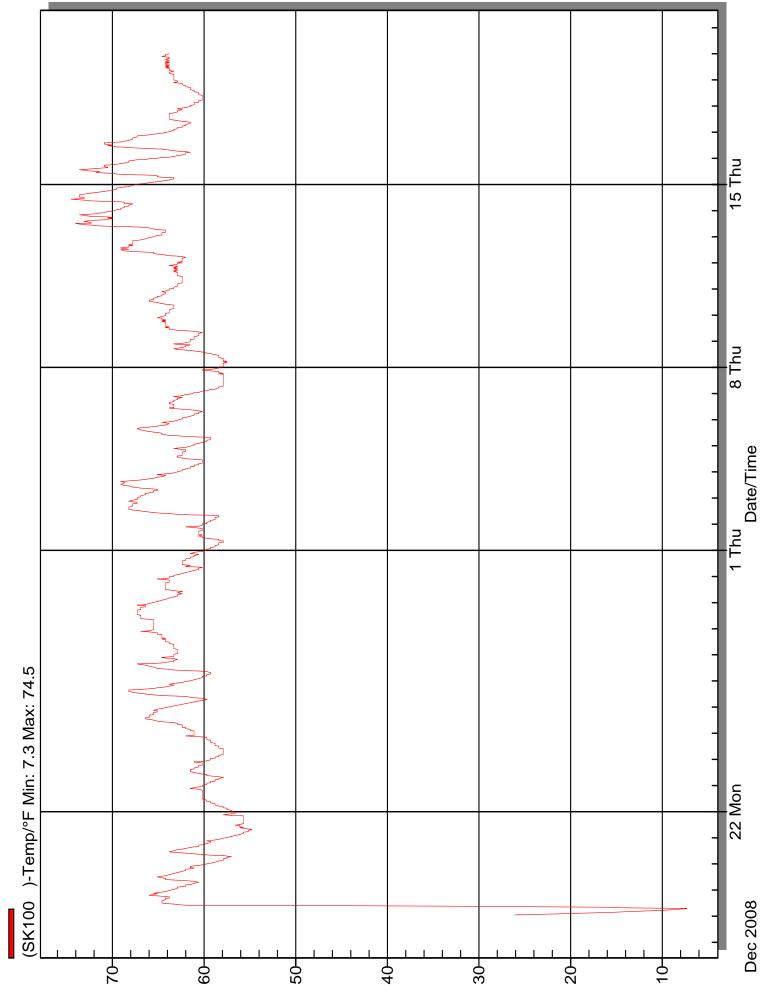
Christie - Rm 114 - SP

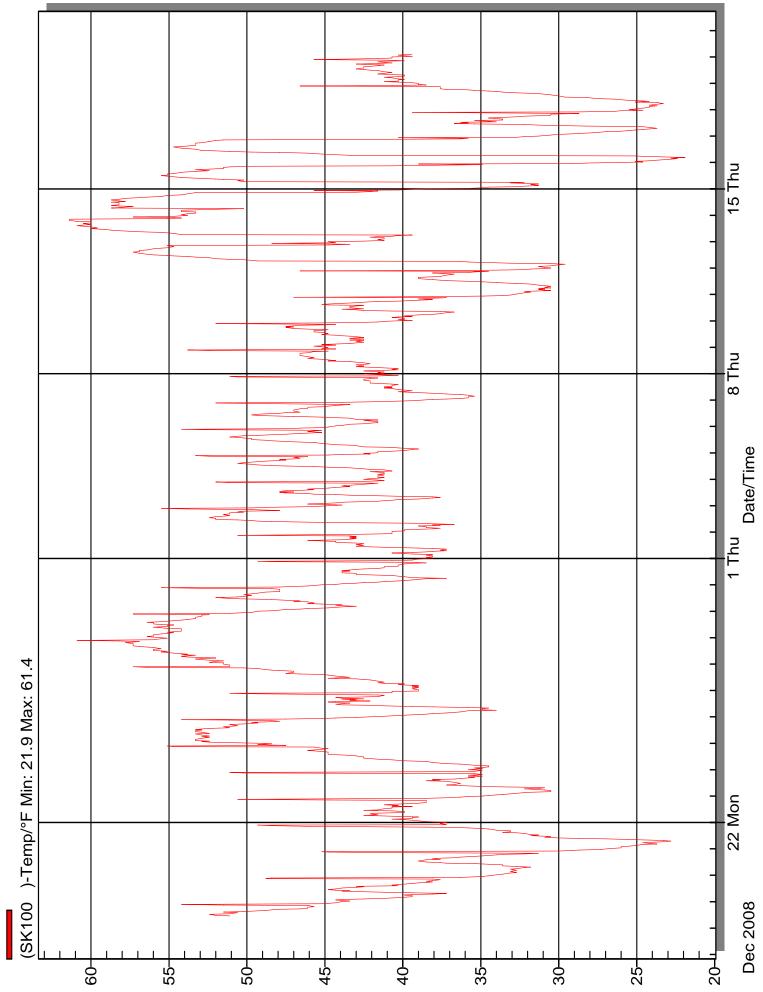



Christie - HV Rm 111 - SP

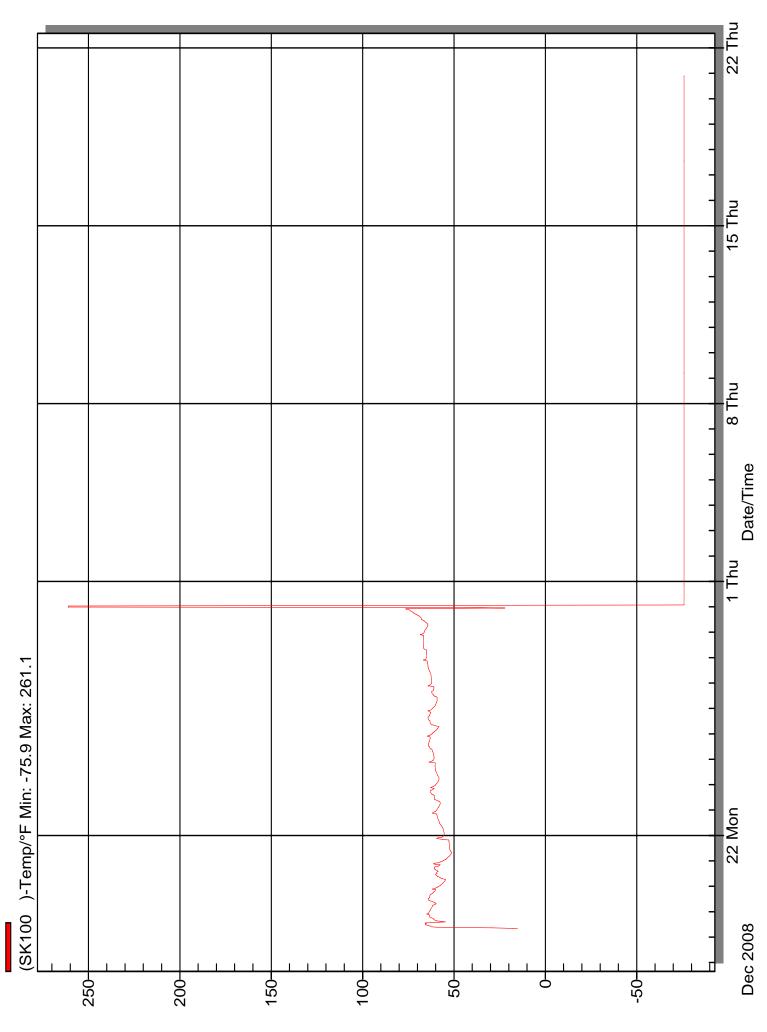


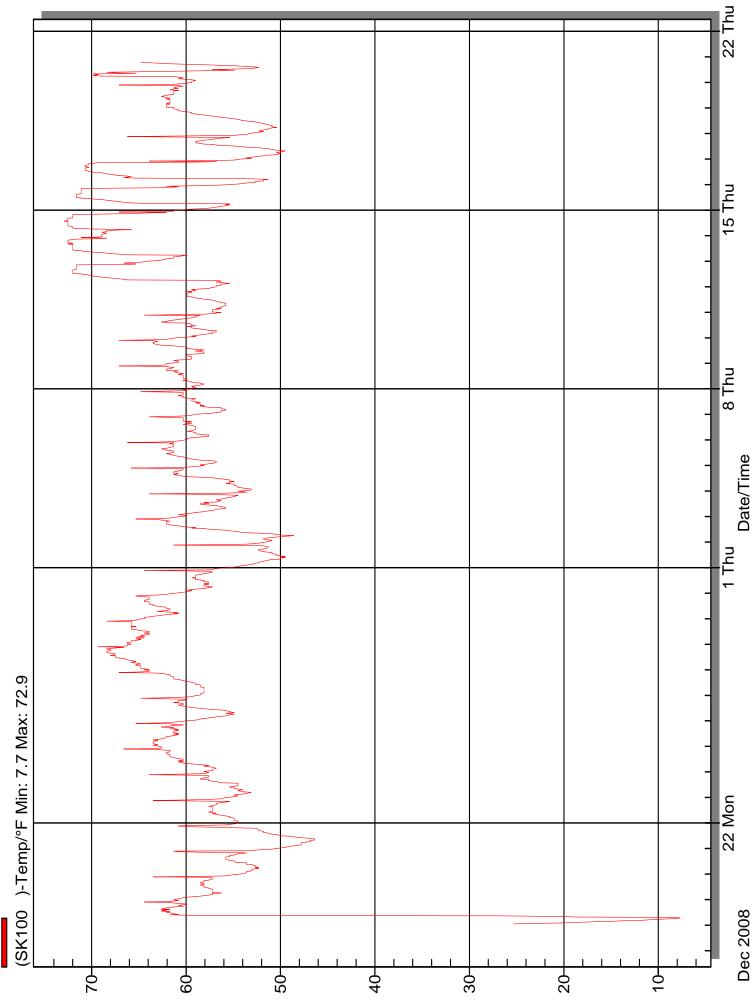


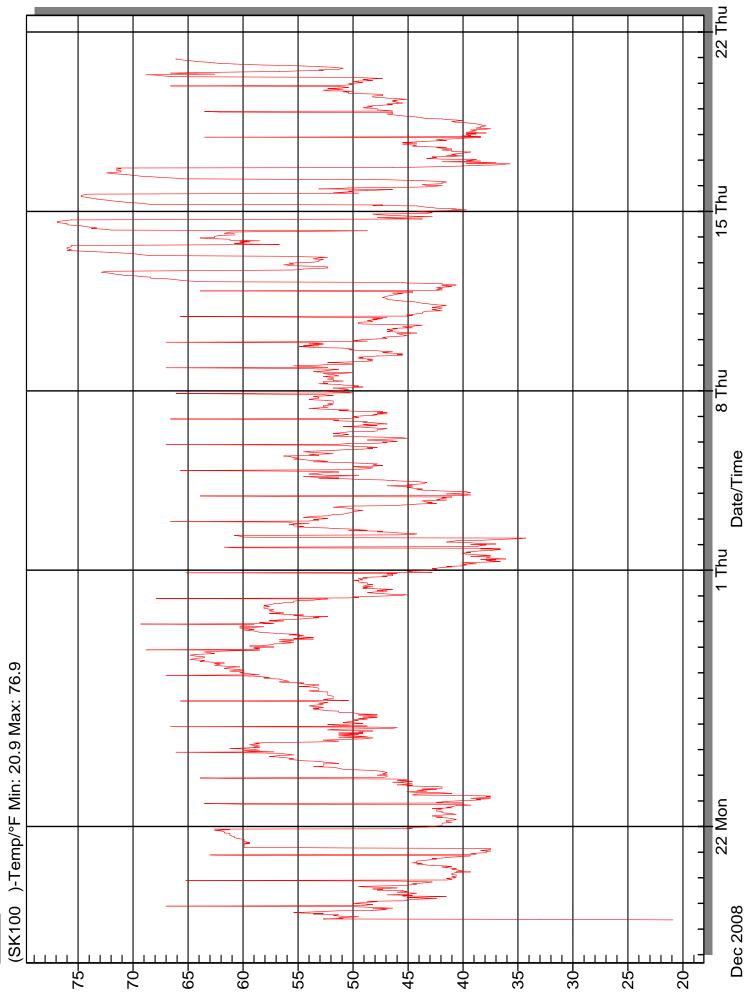




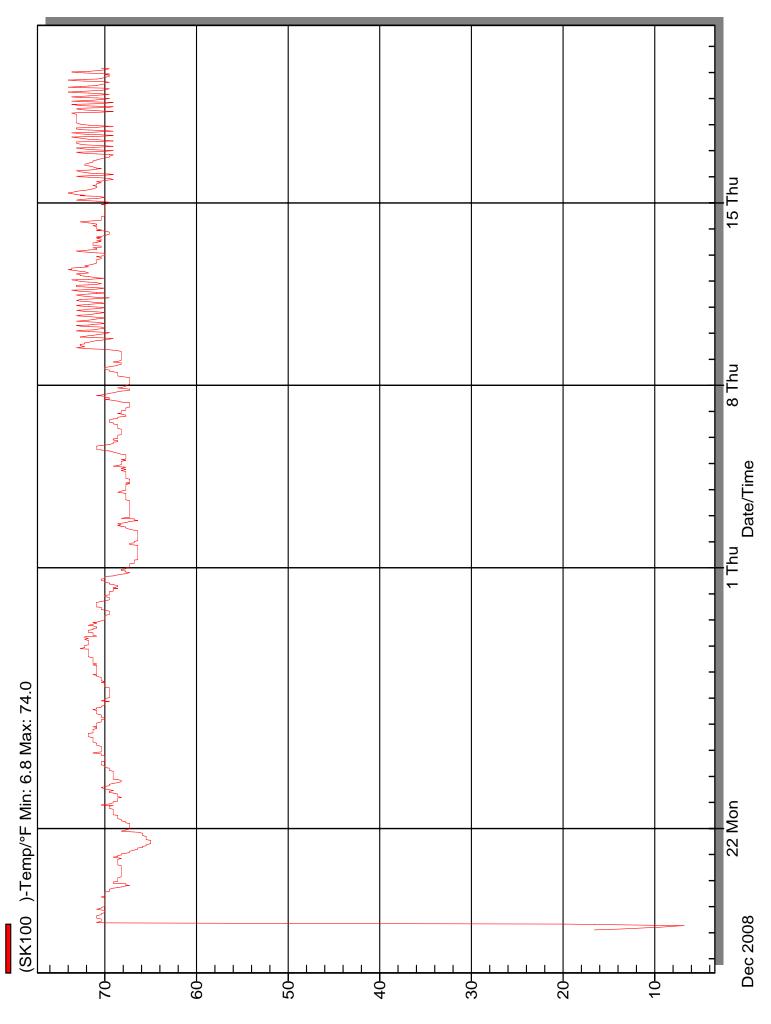
Christie - HV Rm112 - MA

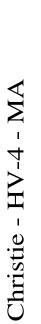


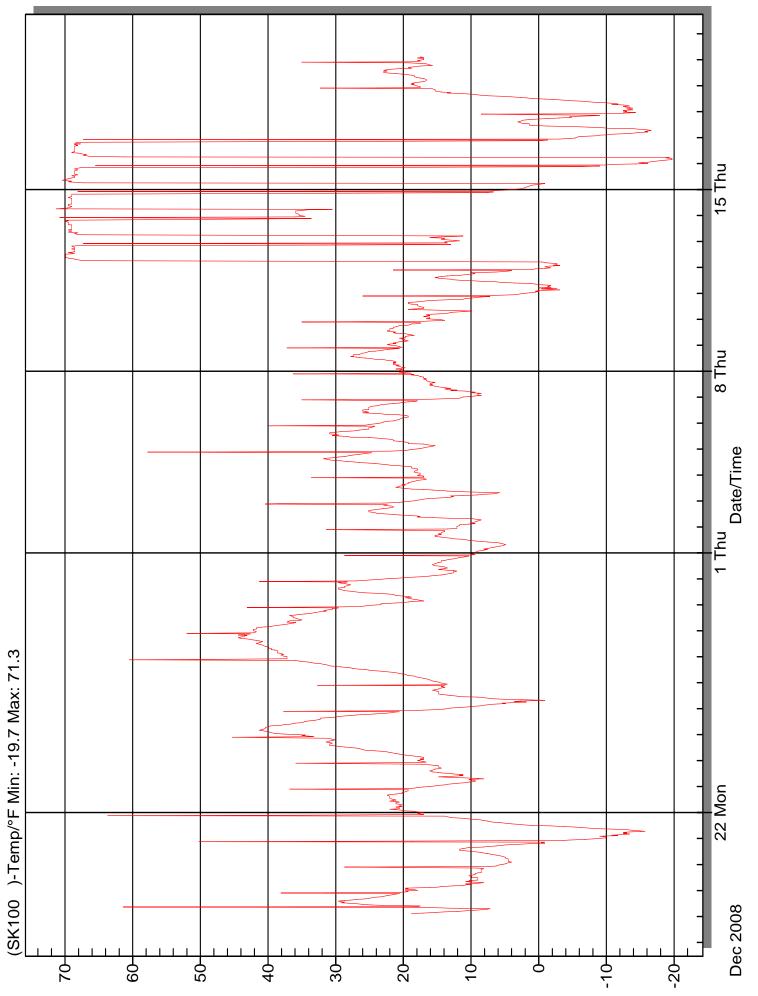

Christie - HV-8 - SP

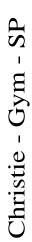

Christie - HV-8 - MA

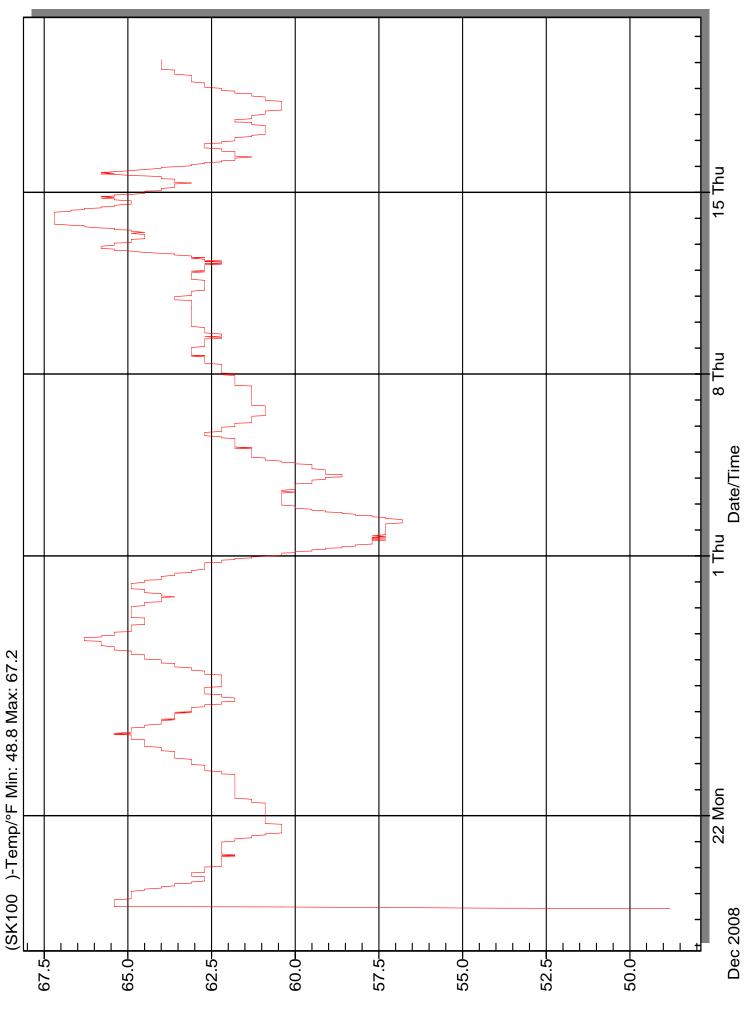
Christie - HV-7 - SP

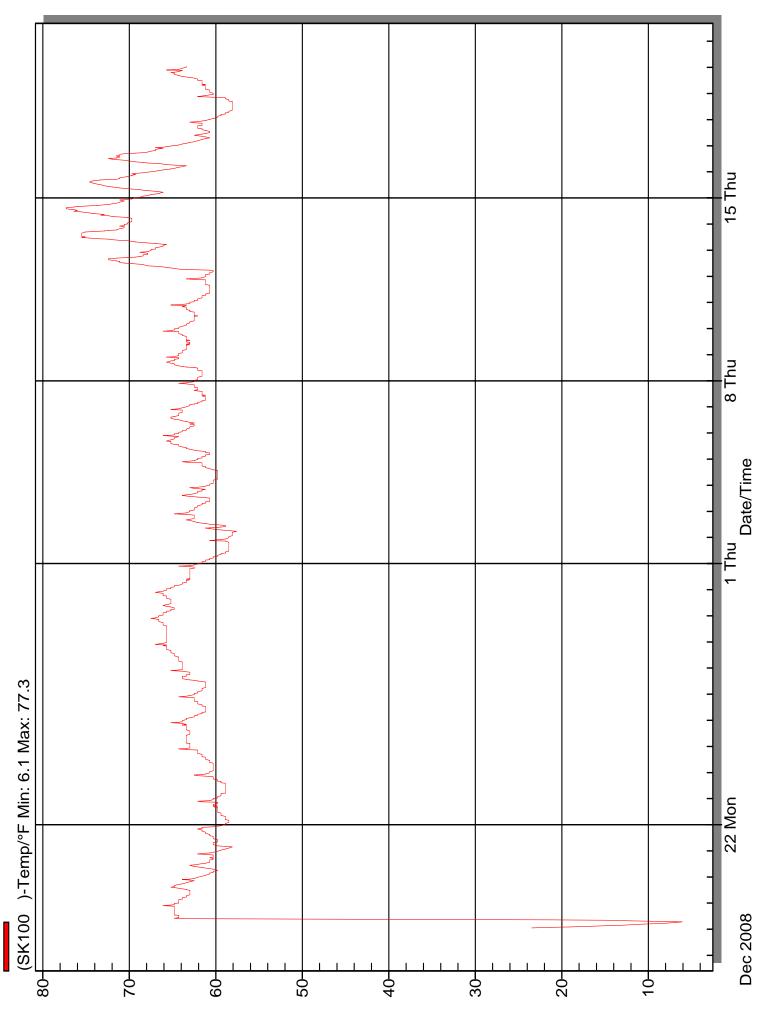


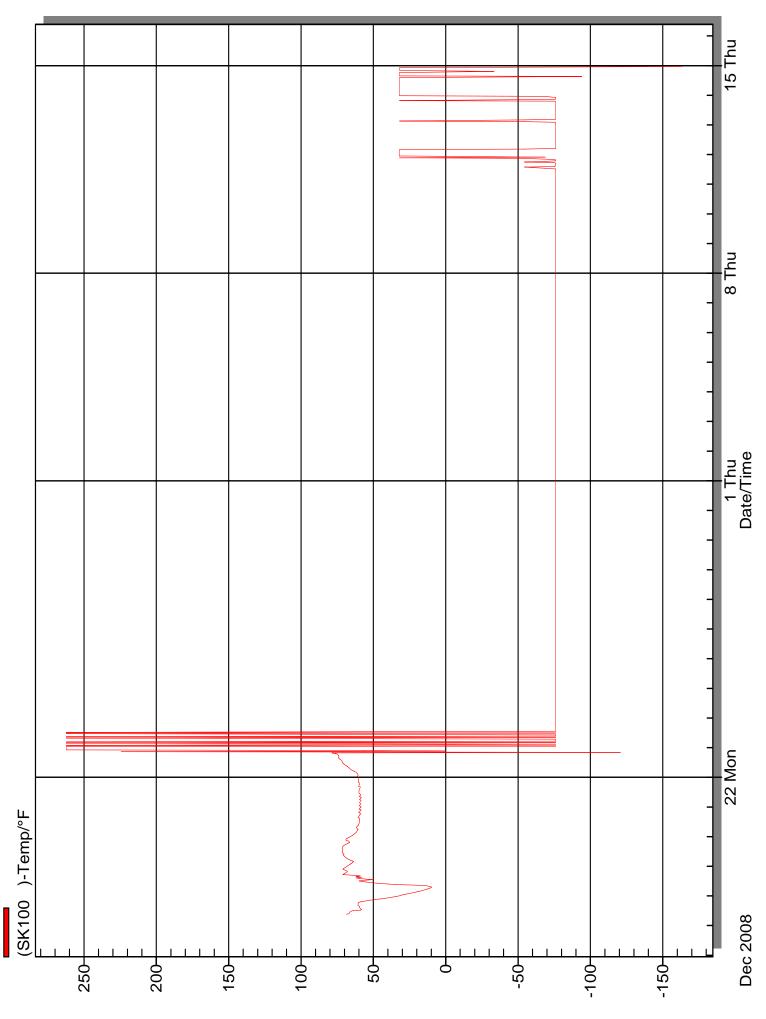

Christie - HV-7 - MA

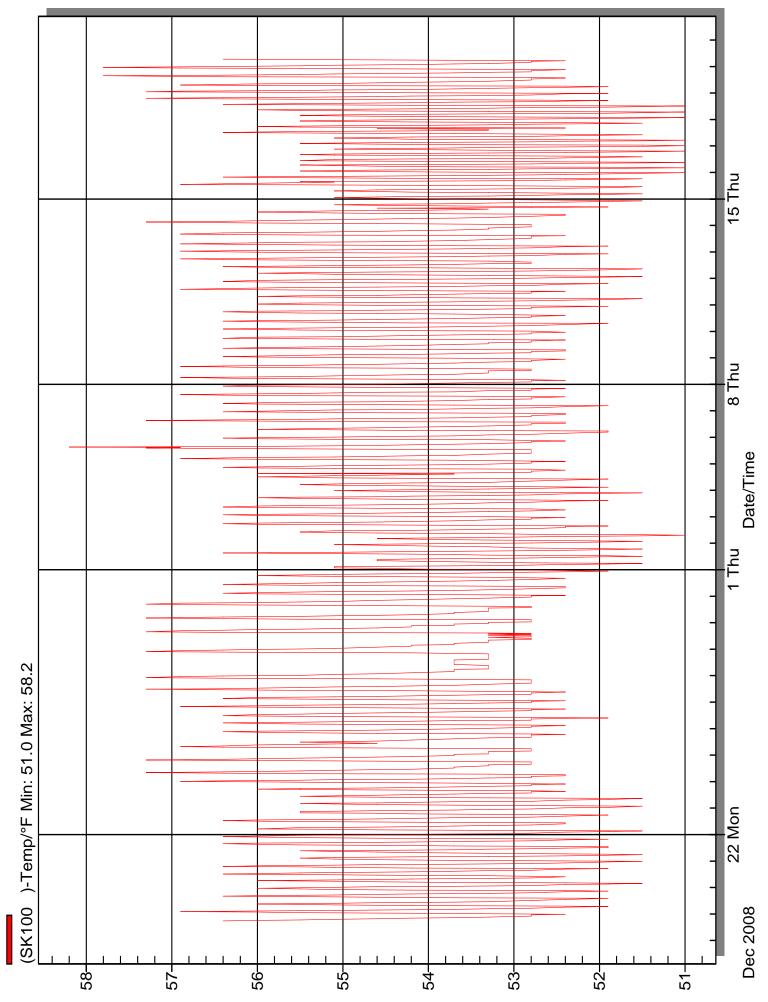


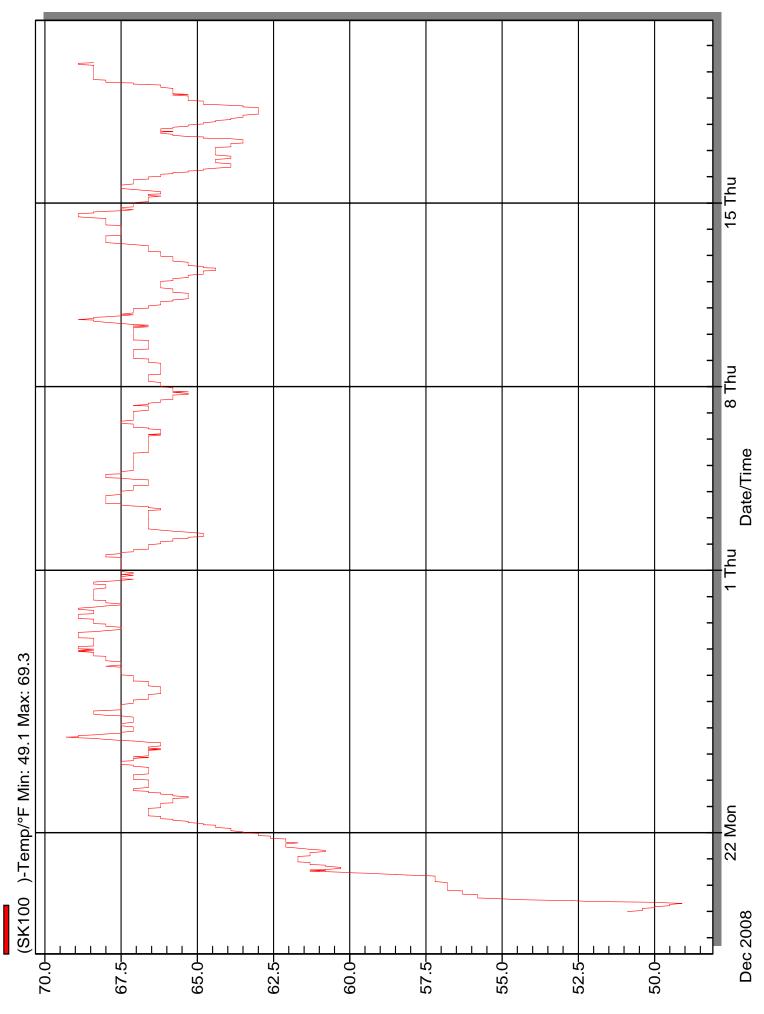

Christie - HV-6 - MA



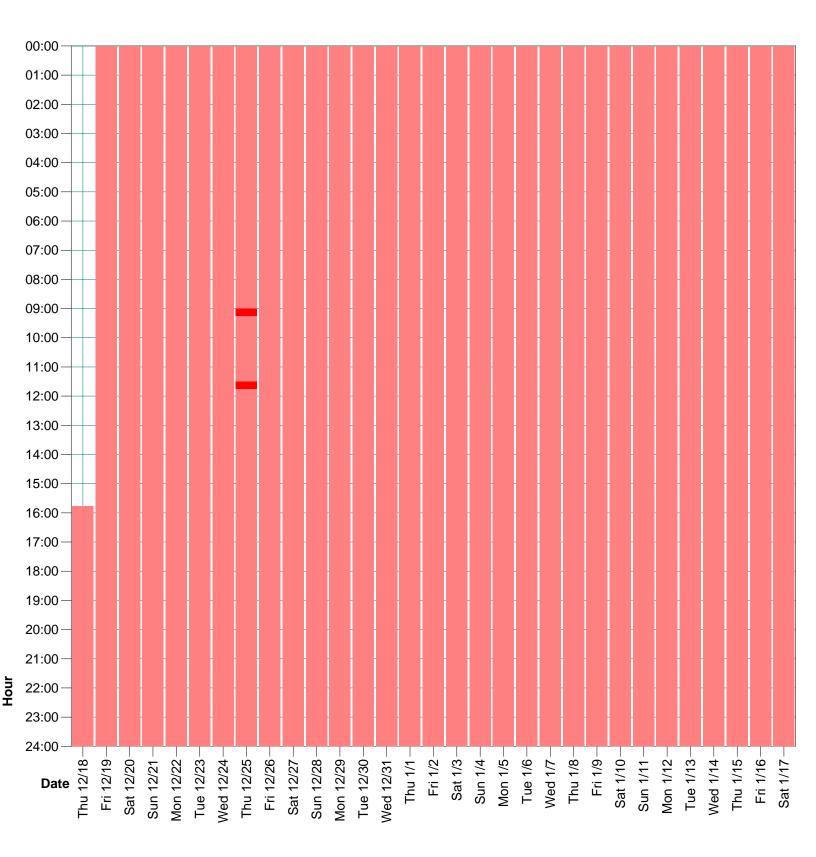






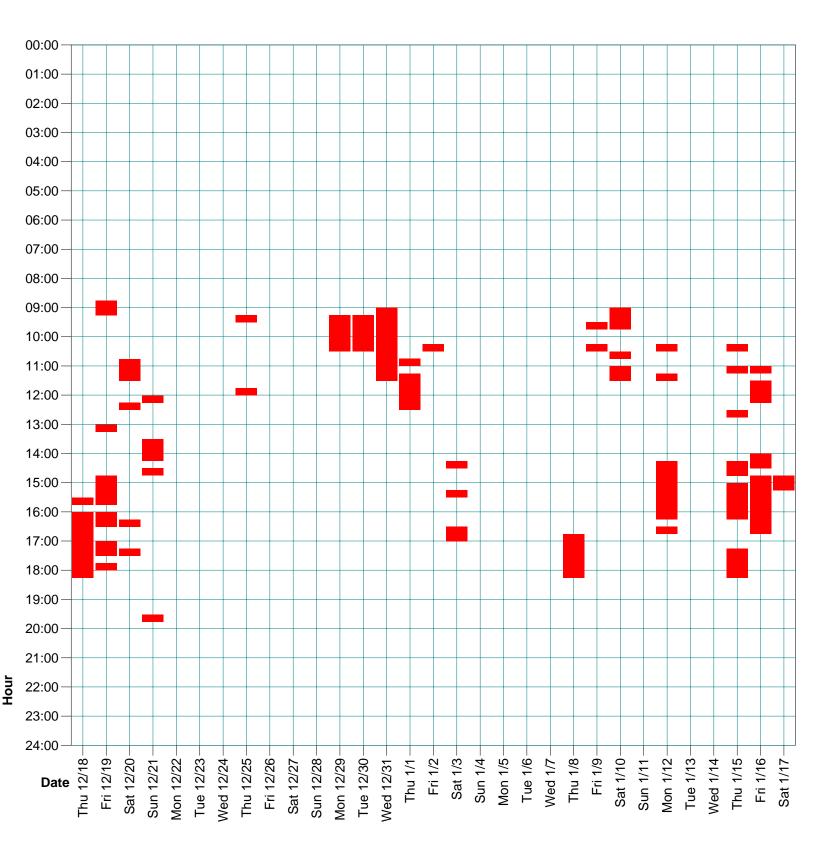


Aroostook - SP

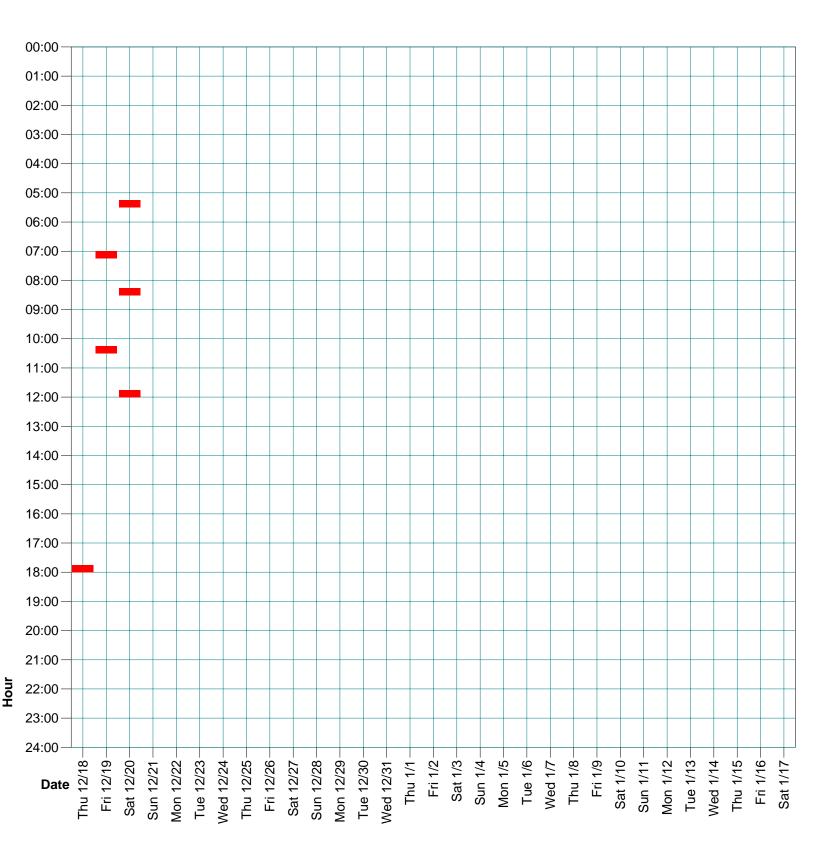


Northern Maine Community College Energy Audit Report

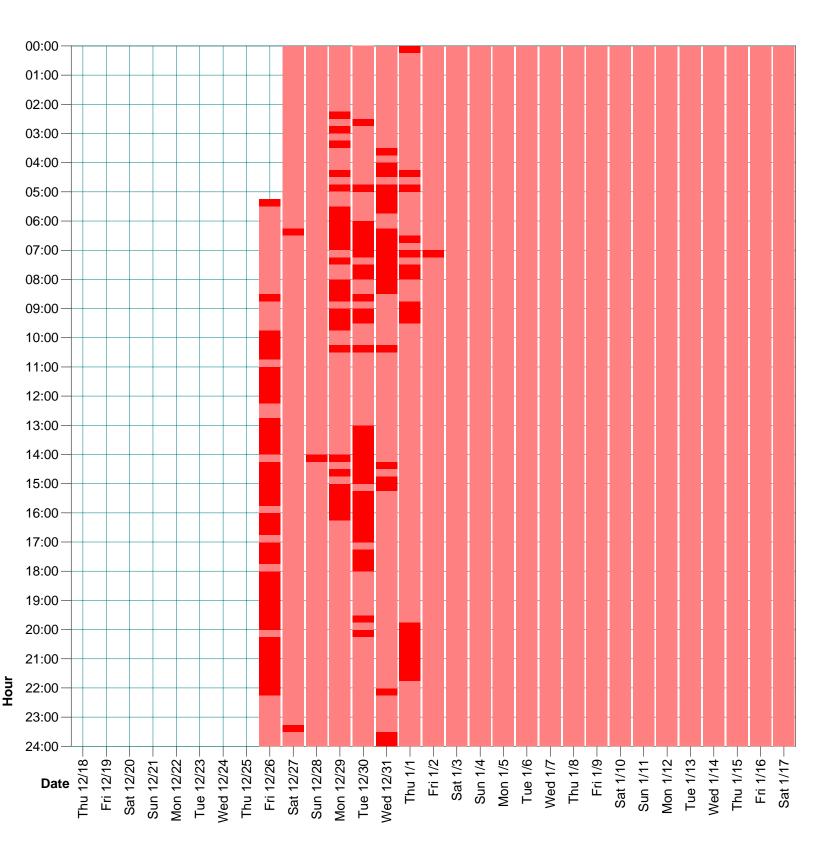
Appendix C On-Time Logger Data


The On-Time logger data shows when equipment was running during the logging period. The red indicates that the equipment was on at the time. The On-Time logger data helps to determine the schedule, hours of operation, of the equipment. These schedules are listed in the Existing Equipment Schedules and Setpoints in the report. The logger data is not always taken as an absolute to determining the schedule, on-site observations, temperature logger data and the energy balance of the building also influence the schedules used for the energy calculations. All of the data is used to interpret the equipment's schedule.

Andrews - HV


0-99% On

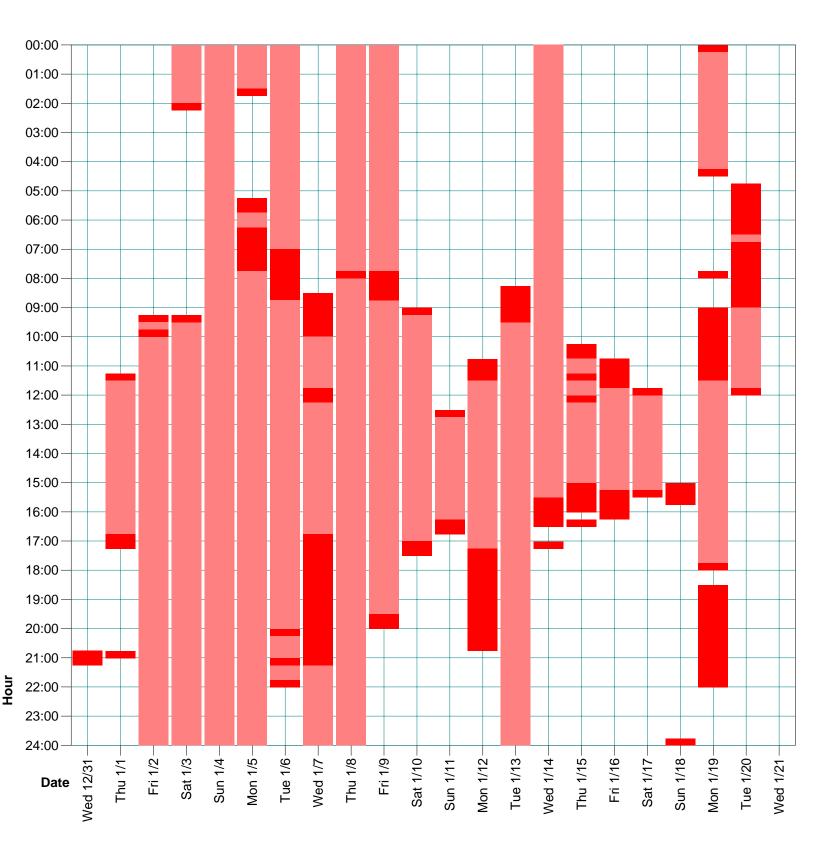
Dust Collector


0-99% On

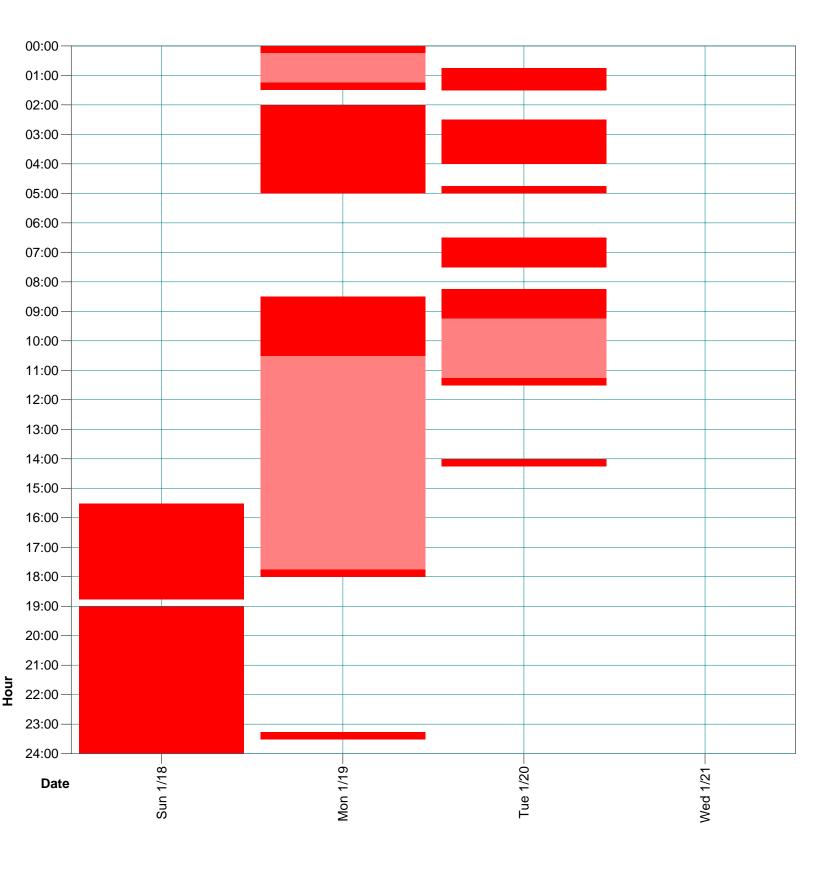
HV Diesel

0-99% On

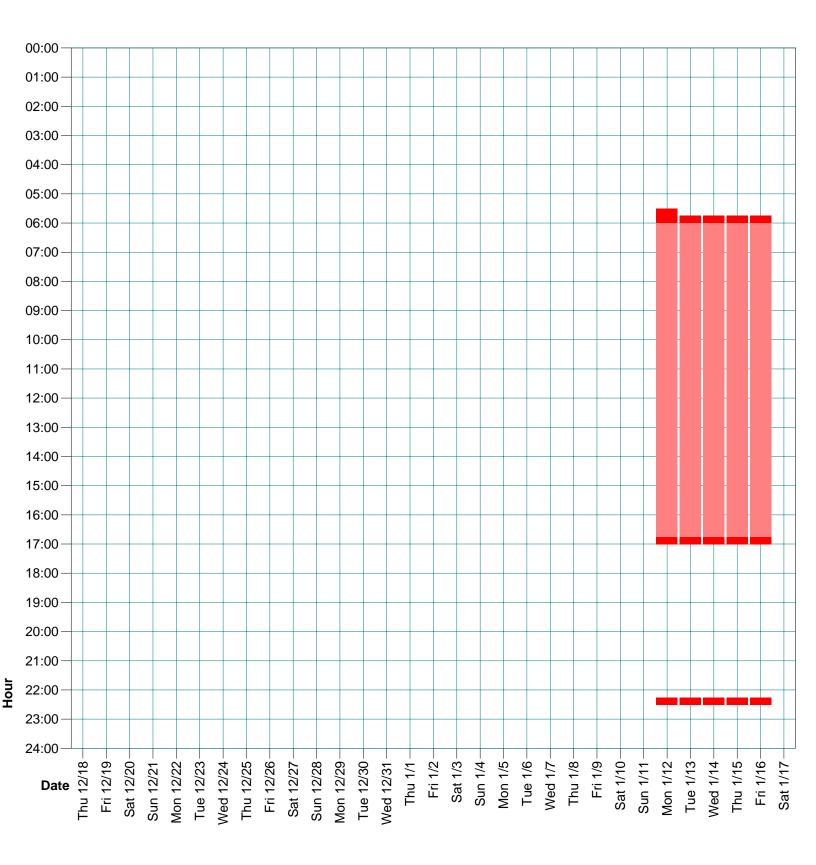
HV Auto


0-99% On

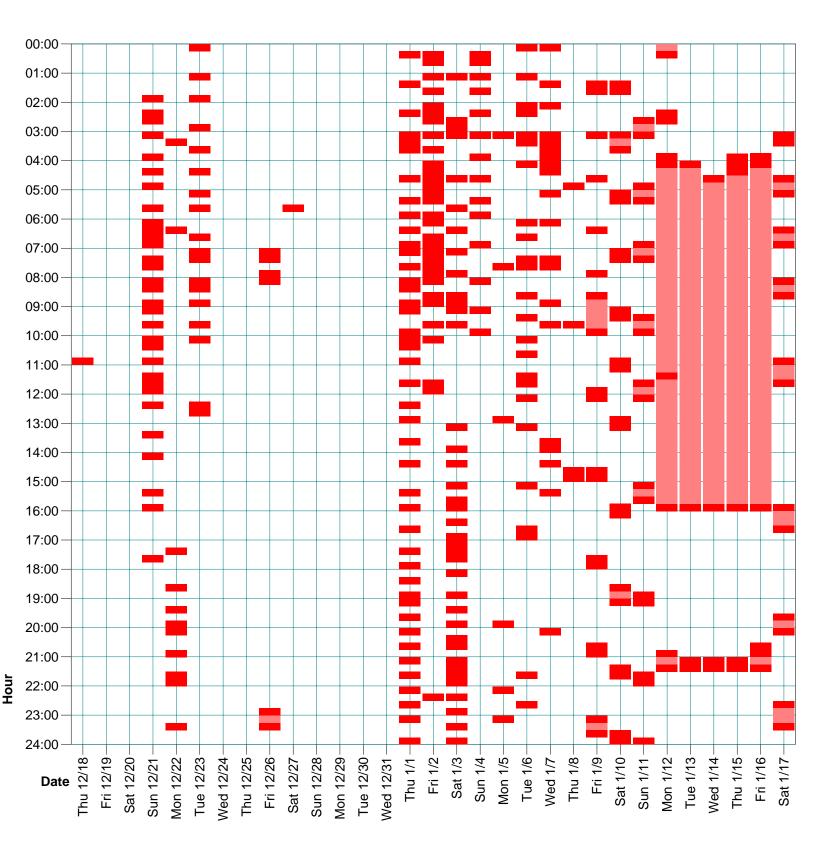
Common HV Dine


0-99% On

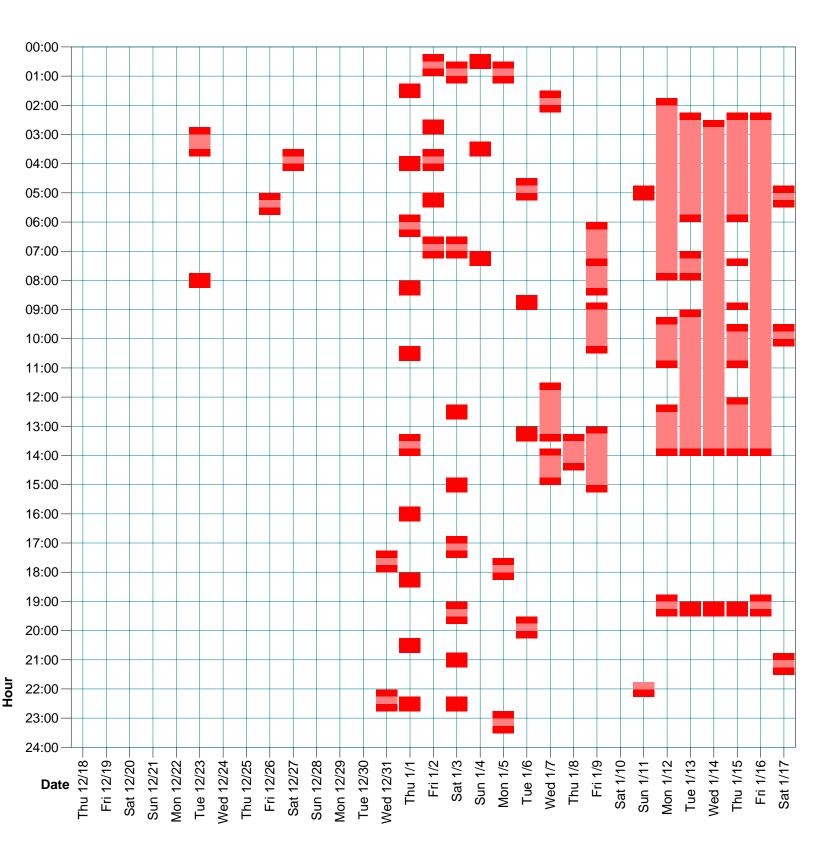
RTU Library


0-99% On

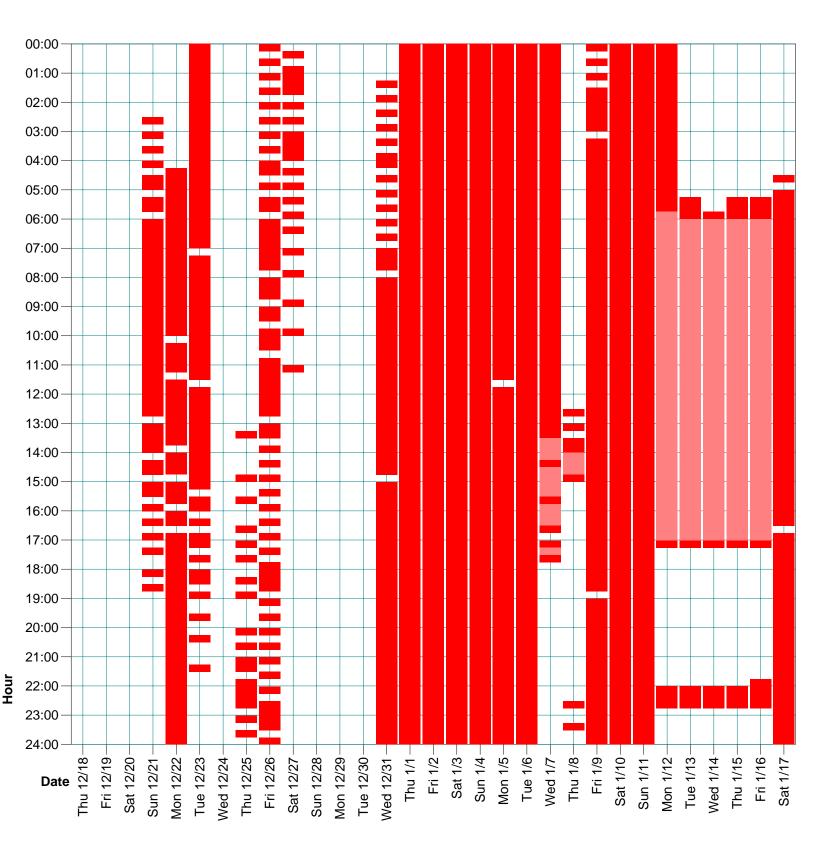
RTU Conference



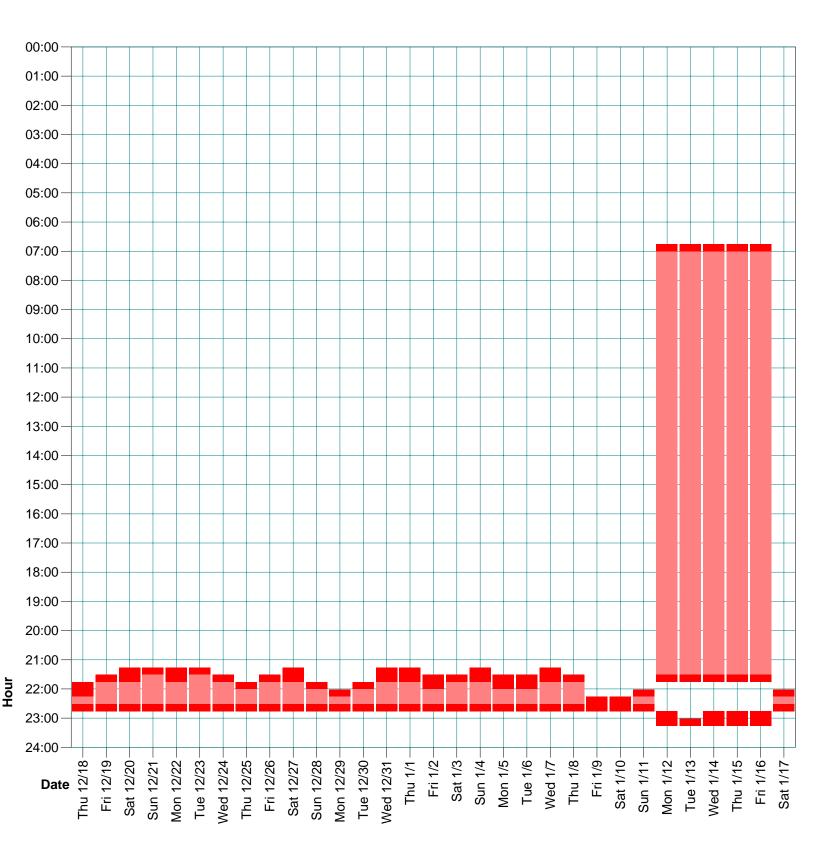
HV Gym


0-99% On

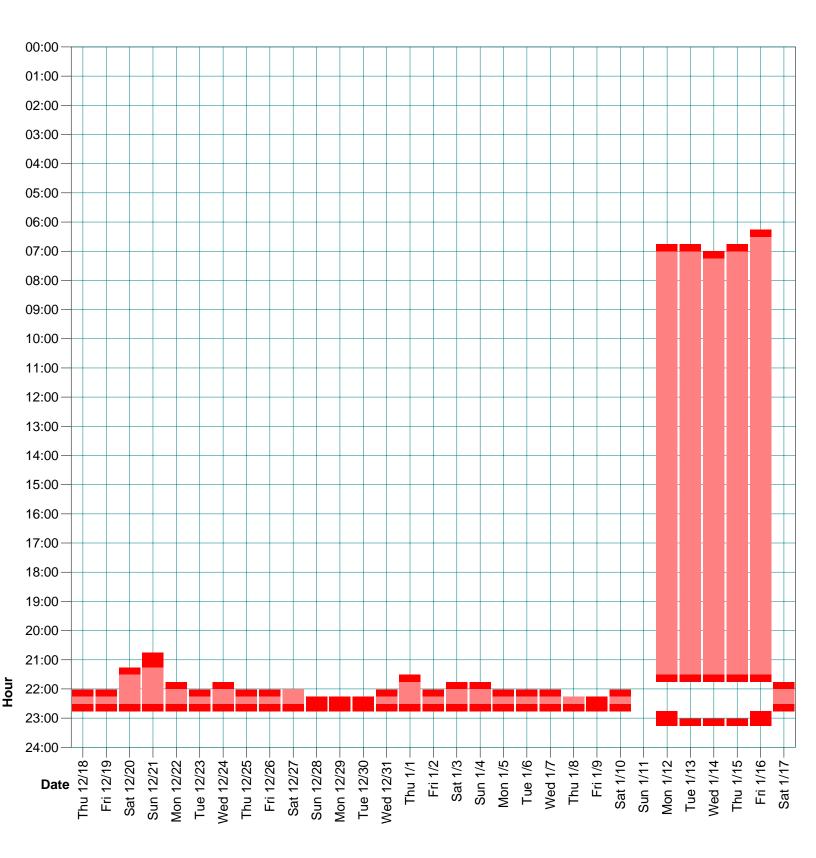
HV Room 112

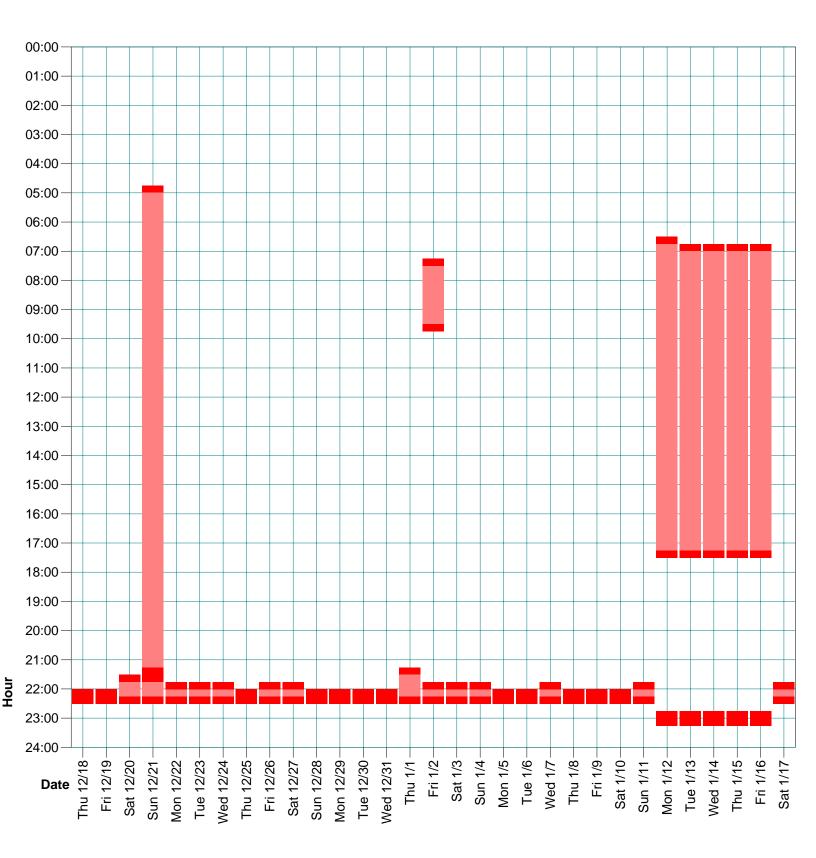

0-99% On

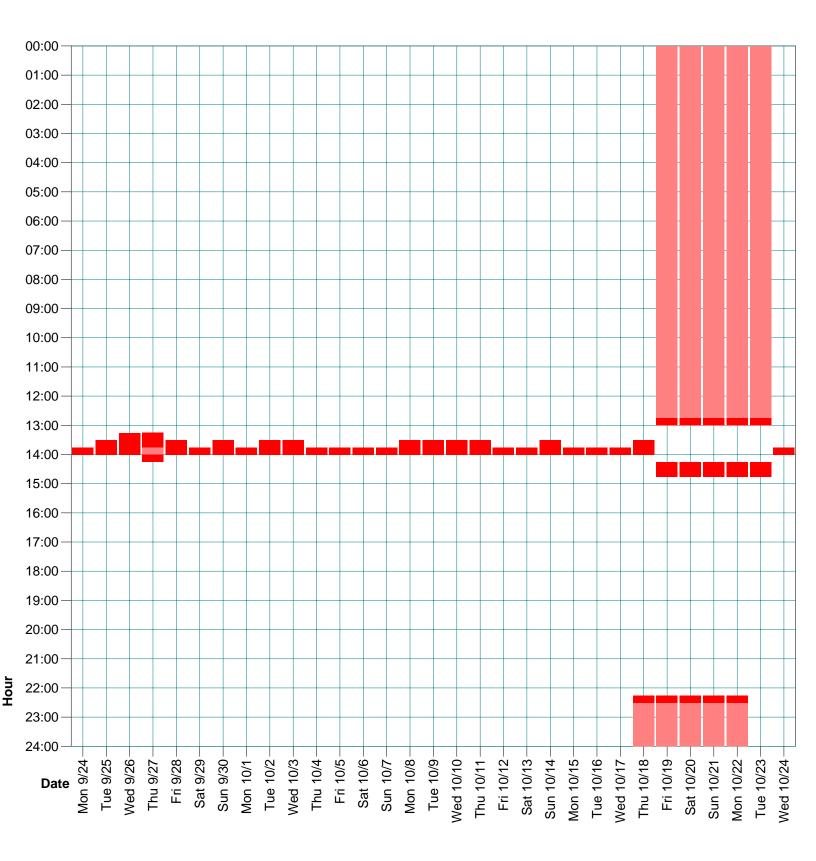
HV Room 111



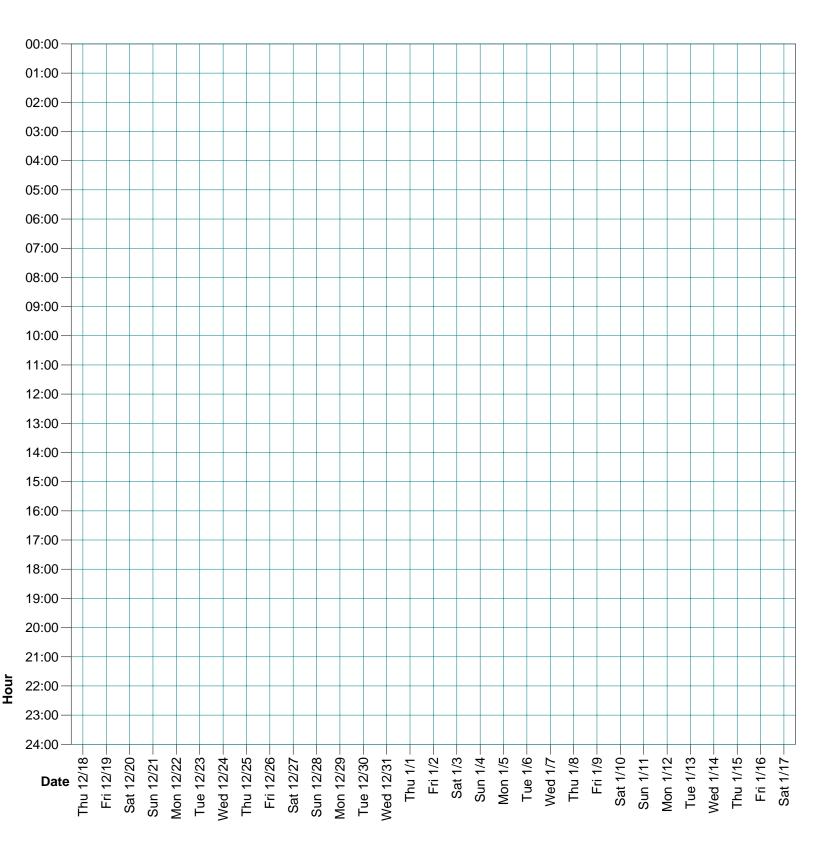
0-99% On


HV Room 110


0-99% On


0-99% On

0-99% On



0-99% On

0-99% On 🛛 100% On

Snow UV Conf.

0-99% On 🛛 100% On

Northern Maine Community College Energy Audit Report

Appendix D Preliminary Utility Analysis

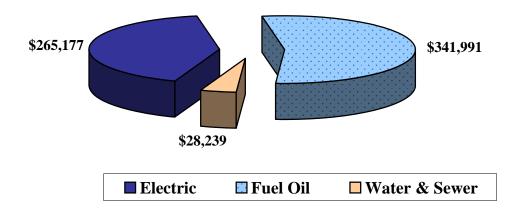
As part of the development of the energy baseline, Honeywell prepared a preliminary utility analysis (PUA). This analysis provides information related to the distribution of energy use against standard models for schools, and benchmarks the energy usage of the buildings against similar ones in the same geographic area.

Honeywell Honeywell Energy Analysis Team (HEAT)

Preliminary Utility Analysis

Northern Maine Community College Presque Isle, ME

Helping customers manage energy resources to improve financial performance


Northern Maine Community College Utility Analysis Period: FY08 vs. FY07

	Curr	ent Year (l	F Y08)	Prio	or Year (F	Y07)
			Water &			Water &
	Electric	Fuel Oil	Sewer	Electric	Fuel Oil	Sewer
Utility Costs*	\$265,177	\$341,991	\$28,239	\$247,463	\$266,912	
Utility Usage (kWh, Gal, Cu.ft.)	1,805,600	120,817	441,100	2,002,800	130,544	
\$ Cost/Unit (kWh, Gal, Cu.ft.)	\$0.1469	\$2.83	\$0.06	\$0.1236	\$2.04	
Electric Demand (kW)	5,206			5,706		
			Water &			
FY08 vs. FY07	Electric	Fuel Oil	Sewer			
Change in Cost	7%	28%		0.4		e e
Change in Usage	-10%	-7%				of facility
Change in \$ Cost/Unit	19%	38%			ep usage (p reduce	down and costs
Change in Electric Demand	-9%					

* Costs include energy and demand components, as well as taxes, surcharges, etc.

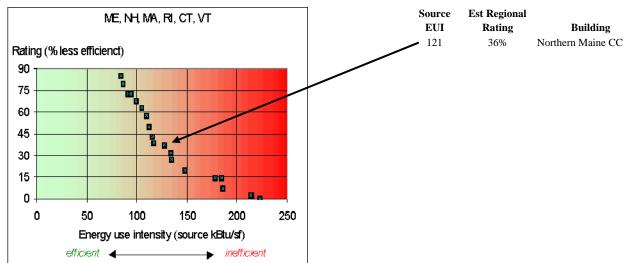
Note: The above utility data applies to the entire campus. The water & sewer data does not include the fire costs of \$3,442 per year.

Actual Cost by Utility - FY08

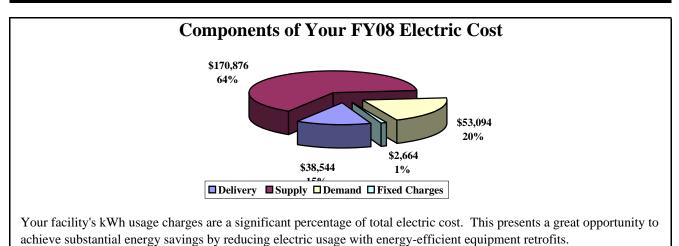
Energy Benchmarking

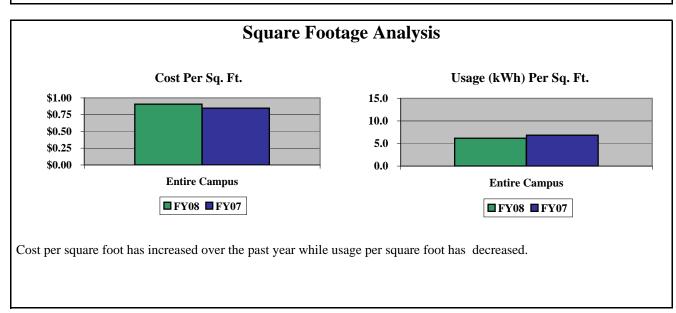
The calculation of EUI (Energy Use Intensity) is shown below. EUI, expressed in kBtu/sf, is normalized for floor area, the most dominant influence on energy use in most buildings. Its use usually provides a good approximation of how your building's energy performance compares to others. Site EUI indicates the rate at which energy is used at your building (the point of use). Source EUI indicates the rate at which energy is used at the generation sources serving your building (the point of source) and indicates the societal energy penalty due to your building The lower the EUI, the higher the rating, indicating that the building is more efficient than other buildings. The greater the EUI, the lower the rating, indicating that there is an opportunity for higher potential benefits from operational improvements.

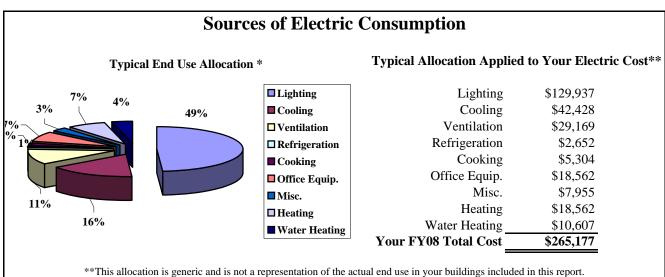
To compare the buildings shown below to each other, and to determine the ranking of the buildings from having the most to the least opportunity for demand-side improvements from a financial perspective, please see the Site EUI ranking below.

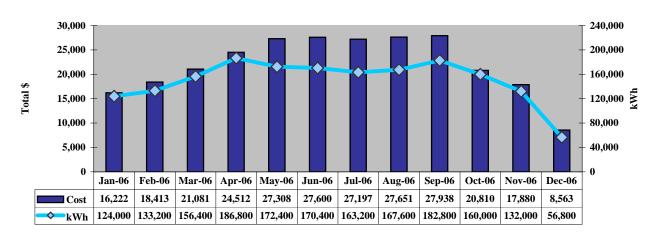

The Source EUI below has been applied to a Department of Energy statistical model from the Oak Ridge National Laboratory web site, http://eber.ed.ornl.gov/benchmark. The Department of Energy has estimated energy use and cost reductions for building source EUI ratings (percentiles) in the table below. Please see the DOE Regional Source EUI Comparison graph below to rate your building in relation to the regional distribution of similar type buildings. (Note: The Source EUI includes the inefficiencies of electrical generation and transmission. A reduction in 'electrical' source EUI includes a benefit in terms of reduction of air pollution emissions and green house gases, and is thus an indicator of societal benefit.)

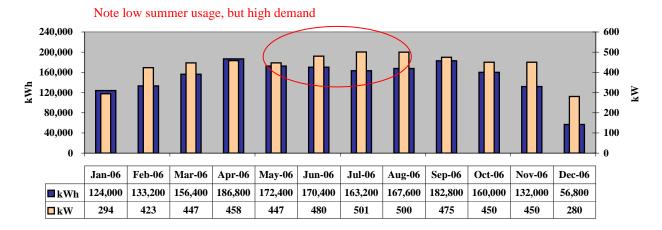
Source EUI	Energy use and	Walk-thru energy
Rating for	cost reduction	assessment
your Building	potential (%)	recommended?
above 60%	below 25%	No
40 to 60%	20 to 35%	Maybe
20 to 40%	35 to 50%	Yes
Below 20%	above 50%	Definitely

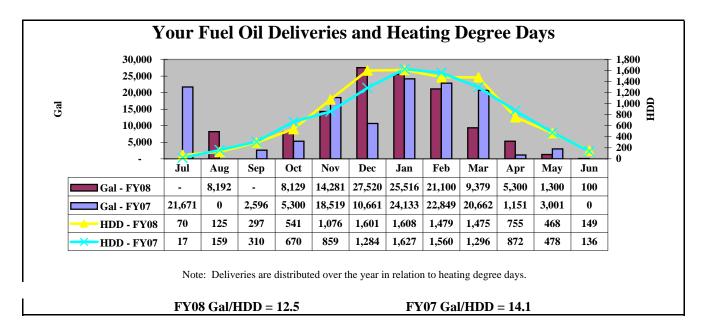

Rating from the most efficient to the least efficient - 2006 consumption

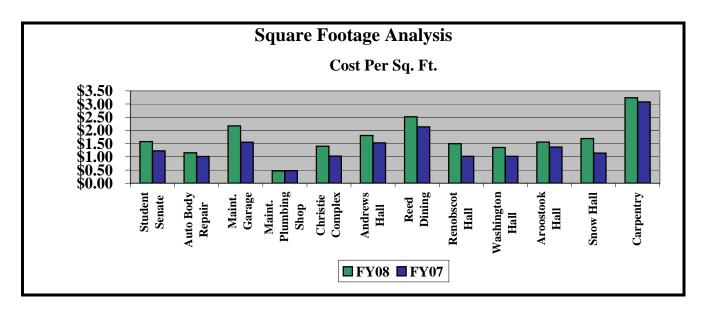

Site EUI Rank	Building	Annual Total Electrical Use (kWh)	Annual Total Non-Electrical Fuel Use (Gals)	Building Campus (sq-ft)		Source EUI: Annual Total Source Energy Use per Sq-Ft (kBtu/sf)	Rating (Regional Source EUI Comparison)
1	Northern Maine CC	1,805,600	120,817	292,052	79	121	0.36

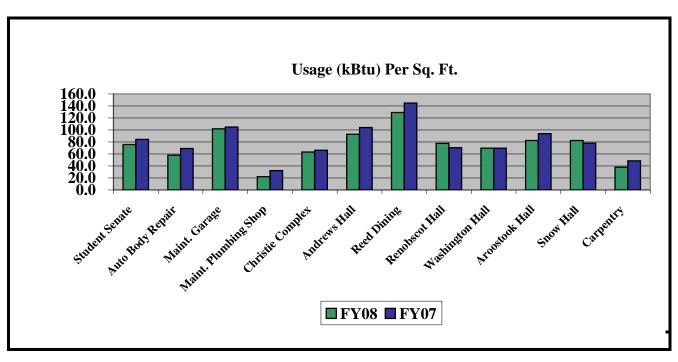

Educational Facilities

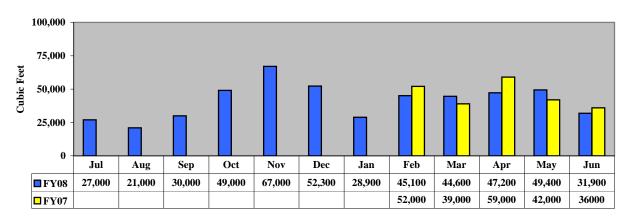

Source: Oak Ridge National Laboratory web site, http://eber.ed.ornl.gov/benchmark



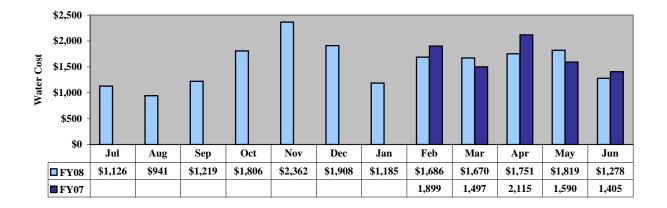

*Source: Nashville Gas Commercial Benchmark Data by Business Segment and Climate Zone

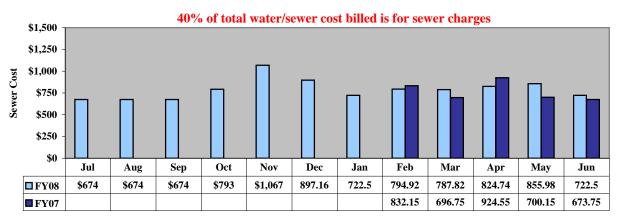

Electric Cost-to-Usage





In the graph and calculation of gallons per Heating Degree Day (HDD) above, it appears that oil was used more efficiently for heating in FY08 than in FY07.




Total Water Usage

Water and sewer cost is approximately \$28,000 per year.

Total Sewer Cost

Northern Maine Community College Energy Audit Report

Appendix E Energy Calculations

The attachment indicates the specific parameters and variables used in each of our energy calculations to determine the various costs and savings to the utilities affected by the proposed changes. The calculations is the culmination of the on-time logger data, the temperature logger data, lighting room-by-rooms, building infiltration inspections, on-site heating equipment inspections, personnel interviews and personal knowledge of the Performance Contracting Engineer. The majority of inputs to the calculations can be reviewed in the Existing and Proposed Temperature and Equipment Schedules. These schedules must be approved by the College prior to project implementation to ensure their accuracy and concurrence of all parties, as to the current and future operation of the equipment.

NMCC - EXISTING SCHEDULES & TEMPERATURE SETPOINTS

Baseline operating parameters are the facility(s) and system(s) operations measured and/or observed before commencement of the Work. The data summarized will be used in the calculations of the baseline energy consumption and/or demand and for calculating baseline adjustments for changes in facility operation that occur during the Guarantee Period. HONEYWELL and CUSTOMER agree that the operating parameters specified are representative of equipment operating characteristics during the Base Year specified in the Agreement. The following data was collected with the assistance of the Facilties Manager and various building personnel and data logging equipment.

Results of data logging equipment are attached hereto, and incoporated herein by reference, as Exhibit G2.

				C	ccupied Sch	edule			Unoccupied/H	loliday & Vac	ations Sche	dule (See note	#2)
Equipment Designation	Zone / Area Served	Qty.	Days	Begin	End	Setpoint	OA Intake	Days	Begin	End	Days	On/Off	Setpoint
Mailman Trac	les												
UV-1	Diesel Classroom	1	M-F	8:00	12:00	67 deg F	0%	M-F	12:00	8:00	S-S	Off	66 deg F
UV-2+5	Automative Classrooms	2	M-F	8:00	12:00	68 deg F	0%	M-F	12:00	8:00	S-S	Off	62 deg F
UV-3	Plumbing + Heating Classroom	1	M-F	12:00	12:01	68 deg F	0%	M-F	12:01	12:00	S-S	Off	62 deg F
UV-4	Welding Classroom	1	M-F	12:00	12:01	68 deg F	0%	M-F	12:01	12:00	S-S	Off	62 deg F
UV-6+7	Res Const Classrooms	2	M-F	8:00	16:00	68 deg F	0%	M-F	16:00	8:00	S-S	Off	62 deg F
HV-1	Diesel	1	M-F	8:00	16:00	67 deg F	15%	M-F	16:00	8:00	S-S	Off	66 deg F
HV-2	Automative	1	M-F	8:00	16:00	68 deg F	15%	M-F	16:00	8:00	S-S	Off	62 deg F
HV-3	Plumbing + Heating	1	M-F	12:00	12:01	68 deg F	10%	M-F	12:01	12:00	S-S	Off	62 deg F
MAU-1	Welding	1	M-F	12:00	12:01	68 deg F	10%	M-F	12:01	12:00	S-S	Off	62 deg F
UHs	Res Const	2	M-F	5:00	16:00	68 deg F	NA	M-F	16:00	5:00	S-S	Off	62 deg F
Residential	I			r	r	1			r		1	1	
HV-1	Andrews Common Areas	1	M-F	0:01	23:59	70 deg F	10%	M-F	23:59	0:01	S-S	Off	55 deg F
HV-2	Commons Dining	1	M-F	3:00	21:00	70 deg F	5%	M-F	21:00	3:00	S-S	Off	60 deg F
UV-1	Commons Conference	1	M-F	12:00	12:01	72 deg F	10%	M-F	12:01	12:00	S-S	Off	60 deg F
UV-2	Snow Conference	1	M-F	12:00	12:01	65 deg F	5%	M-F	12:01	12:00	S-S	Off	60 deg F
FT-1	Andrews Hall	1	M-F	0:01	23:59	68 deg F	5%	M-F	23:59	0:01	S-S	Off	55 deg F
FT-2	Aroostook Hall	1	M-F	0:01	23:59	68 deg F	5%	M-F	23:59	0:01	S-S	Off	55 deg F
FT-3	Penobscot Hall	1	M-F	0:01	23:59	68 deg F	5%	M-F	23:59	0:01	S-S	Off	55 deg F
FT-4	Snow Hall	1	M-F	0:01	23:59	68 deg F	5%	M-F	23:59	0:01	S-S	Off	55 deg F
FT-5	Washington Hall	1	M-F	0:01	23:59	68 deg F	5%	M-F	23:59	0:01	S-S	Off	55 deg F
Shops	1			r	r				r	r	r	,	
FT-1	Autobody	1	M-F	6:00	16:00	68 deg F	10%	M-F	16:00	6:00	S-S	On schedule	52 deg F
Furnace	Maintenance Shop	1	M-F	6:00	16:00	70 deg F	10%	M-F	16:00	6:00	S-S	On schedule	65 deg F
Furnace	Maintenance Garage	1	M-F	6:00	16:00	61 deg F	10%	M-F	16:00	6:00	S-S	On schedule	60 deg F

3 of 53

Notes:

An unoccupied cooling setpoint of 90 Degrees F signifies that air conditioning will be disabled during unoccupied mode.
 Holidays & Vacations: All observed holidays, Christmas Recess, Winter Recess, Spring Recess, Summer Recess.

NMCC Representative:

Honeywell: Date:

NMCC Exhibit G1 03-09-09 3/27/2009

Proposed Schedules

NMCC - PROPOSED SCHEDULES & TEMPERATURE SETPOINTS

Proposed operating parameters are the facility(s) and system(s) after commencement of the Work. The data summarized will be used in the calculations of the post-retrofit energy consumption and/or demand. HONEYWELL and CUSTOMER agree that the proposed operating parameters specified are representative of equipment operating characteristics during the Guarantee Year specified in the Agreement.

				(ccupied Sche	dule	•		Unoccupied/I	Holiday & Vac	ations Sched	ule (See note #	2)
Equipment Designation	Zone / Area Served	Qty.	Days	Begin	End	Setpoint	OA Intake	Days	Begin	End	Days	On/Off	Setpoint
Christie Com	plex			n	n	n			n	ſ	ſ	-	
RTU-1	Library	1	M-F	8:00	20:00	70 deg F	10%	M-F	20:00	8:00	S-S	On schedule	60 deg F
RTU-2	Conference Center	1	M-F	9:00	18:00	72 deg F	20%	M-F	18:00	9:00	S-S	Off	66 deg F
RTU-3	Continuing Ed	1	M-F	7:00	16:00	73 deg F	15%	M-F	16:00	7:00	S-S	Off	67 deg F
HV-1	Womens Locker Room	1	M-F	5:00	16:00	72 deg F	30%	M-F	16:00	5:00	S-S	Off	66 deg F
HV-2	Mens Locker Room	1	M-F	5:00	16:00	72 deg F	30%	M-F	16:00	5:00	S-S	Off	66 deg F
AHU-3+4	Gymnasium	2	M-F	6:00	17:00	67 deg F	15%	M-F	17:00	6:00	S-S	Off	62 deg F
HV-4	Learning Center	1	M-F	8:00	18:00	70 deg F	10%	M-F	18:00	8:00	S-S	Off	60 deg F
HV-6	Nursing	1	M-F	7:00	16:00	75 deg F	30%	M-F	16:00	7:00	S-S	Off	60 deg F
HV-7	2nd Floor Offices and Hallway	1	M-F	7:00	16:00	72 deg F	10%	M-F	16:00	7:00	S-S	Off	60 deg F
HV-8	Classrooms 201-203	1	M-F	7:00	21:30	70 deg F	30%	M-F	21:30	7:00	S-S	Off	60 deg F
HV-9	Racketball Court	1	M-F	12:00	12:01	60 deg F	0%	M-F	12:01	12:00	S-S	Off	60 deg F
HV-10	Lecture Hall	1	M-F	6:00	16:30	72 deg F	35%	M-F	16:30	6:00	S-S	Off	60 deg F
HV-110	Room 110	1	M-F	8:00	16:00	70 deg F	10%	M-F	16:00	8:00	S-S	Off	60 deg F
HV-111	Room 111	1	M-F	8:00	16:00	70 deg F	10%	M-F	16:00	8:00	S-S	Off	60 deg F
HV-112	Room 112	1	M-F	8:00	16:00	72 deg F	10%	M-F	16:00	8:00	S-S	Off	60 deg F
FC-108B	Room 108B	1	M-F	8:00	16:00	72 deg F	80%	M-F	16:00	8:00	S-S	Off	60 deg F
FC-113	Room 113	1	M-F	8:00	16:00	72 deg F	80%	M-F	16:00	8:00	S-S	Off	60 deg F
FC-114	Room 114	1	M-F	8:00	16:00	70 deg F	80%	M-F	16:00	8:00	S-S	Off	60 deg F
FC-115	Room 115	1	M-F	8:00	16:00	72 deg F	80%	M-F	16:00	8:00	S-S	Off	60 deg F
FC-214	Room 214	1	M-F	8:00	16:00	67 deg F	80%	M-F	16:00	8:00	S-S	Off	60 deg F
HRU-1	Martin Building	1	M-F	7:00	16:00	68 deg F	100%	M-F	16:00	7:00	S-S	Off	60 deg F
UV-1-3	2nd Floor Science Classrooms	3	M-F	7:30	16:00	72 deg F	30%	M-F	16:00	7:30	S-S	Off	60 deg F
UV-4	Computer Lab 208	1	M-F	7:00	20:00	72 deg F	30%	M-F	20:00	7:00	S-S	Off	60 deg F
UV-5	Metal Fabrication	1	M-F	6:00	16:30	72 deg F	30%	M-F	16:30	6:00	S-S	Off	60 deg F
FC-A	Metal Fab Classroom	1	M-F	6:00	16:30	72 deg F	80%	M-F	16:30	6:00	S-S	Off	60 deg F
UV-1-18	Central Offices and Classrooms	18	M-F	7:00	20:00	72 deg F	30%	M-F	20:00	7:00	S-S	Off	60 deg F
FC-19	Student Services Offices	1	M-F	7:00	16:00	72 deg F	30%	M-F	16:00	7:00	S-S	Off	60 deg F
Liebert-1+2	Computer Labs 209+210	2	M-F	7:00	20:00	72 deg F	80%	M-F	20:00	7:00	S-S	Off	60 deg F

Proposed Schedules

NMCC - PROPOSED SCHEDULES & TEMPERATURE SETPOINTS

Proposed operating parameters are the facility(s) and system(s) after commencement of the Work. The data summarized will be used in the calculations of the post-retrofit energy consumption and/or demand. HONEYWELL and CUSTOMER agree that the proposed operating parameters specified are representative of equipment operating characteristics during the Guarantee Year specified in the Agreement.

				(ccupied Sche	edule			Unoccupied/H	Holiday & Vac	ations Sched	ule (See note #	2)
Equipment Designation	Zone / Area Served	Qty.	Days	Begin	End	Setpoint	OA Intake	Days	Begin	End	Days	On/Off	Setpoint
Mailman Trad	es											1	
UV-1	Diesel Classroom	1	M-F	8:00	16:00	67 deg F	30%	M-F	16:00	8:00	S-S	Off	62 deg F
UV-2+5	Automative Classrooms	2	M-F	8:00	16:00	68 deg F	30%	M-F	16:00	8:00	S-S	Off	62 deg F
UV-3	Plumbing + Heating Classroom	1	M-F	8:00	16:00	68 deg F	30%	M-F	16:00	8:00	S-S	Off	62 deg F
UV-4	Welding Classroom	1	M-F	8:00	16:00	68 deg F	30%	M-F	16:00	8:00	S-S	Off	62 deg F
UV-6+7	Res Const Classrooms	2	M-F	8:00	16:00	68 deg F	30%	M-F	16:00	8:00	S-S	Off	62 deg F
HV-1	Diesel	1	M-F	8:00	16:00	67 deg F	30%	M-F	16:00	8:00	S-S	Off	62 deg F
HV-2	Automative	1	M-F	8:00	16:00	68 deg F	30%	M-F	16:00	8:00	S-S	Off	62 deg F
HV-3	Plumbing + Heating	1	M-F	8:00	16:00	68 deg F	30%	M-F	16:00	8:00	S-S	Off	62 deg F
HV-4	Welding	1	M-F	8:00	16:00	68 deg F	50%	M-F	16:00	8:00	S-S	Off	62 deg F
HV-5	Res Const	2	M-F	8:00	16:00	68 deg F	15%	M-F	16:00	8:00	S-S	Off	62 deg F
Residential													
HV-1	Andrews Common Areas	1	M-F	0:01	23:59	70 deg F	30%	M-F	23:59	0:01	S-S	Off	55 deg F
HV-2	Commons Dining	1	M-F	10:00	21:00	70 deg F	15%	M-F	21:00	10:00	S-S	Off	60 deg F
UV-1	Commons Conference	1	M-F	12:00	12:30	72 deg F	30%	M-F	12:30	12:00	S-S	Off	60 deg F
UV-2	Snow Conference	1	M-F	12:00	12:30	65 deg F	30%	M-F	12:30	12:00	S-S	Off	60 deg F
HRU-1	Andrews Hall	1	M-F	0:01	23:59	68 deg F	10%	M-F	23:59	0:01	S-S	Off	55 deg F
HRU-2	Aroostook Hall	1	M-F	0:01	23:59	68 deg F	10%	M-F	23:59	0:01	S-S	Off	55 deg F
HRU-3	Penobscot Hall	1	M-F	0:01	23:59	68 deg F	10%	M-F	23:59	0:01	S-S	Off	55 deg F
HRU-4	Snow Hall	1	M-F	0:01	23:59	68 deg F	10%	M-F	23:59	0:01	S-S	Off	55 deg F
HRU-5	Washington Hall	1	M-F	0:01	23:59	68 deg F	10%	M-F	23:59	0:01	S-S	Off	55 deg F
Shops	1			r	r	n				1	1	· · · ·	
HRU-1	Autobody	1	M-F	6:00	16:00	68 deg F	20%	M-F	16:00	6:00	S-S	On schedule	52 deg F
HRU-2	Maintenance Shop	1	M-F	6:00	16:00	70 deg F	10%	M-F	16:00	6:00	S-S	On schedule	60 deg F
Furnace	Maintenance Garage	1	M-F	6:00	16:00	61 deg F	10%	M-F	16:00	6:00	S-S	On schedule	60 deg F

Notes:

An unoccupied cooling setpoint of 90 Degrees F signifies that air conditioning will be disabled during unoccupied mode.
 Holidays & Vacations: All observed holidays, Christmas Recess, Winter Recess, Spring Recess, Summer Recess.

School Representative:

Honeywell:

Date:

Baseline operating parameters are the facility(s) and system(s) operations measured and/or observed before commencement of the Work. The data summarized will be used in the calculations of the baseline energy consumption and/or demand and for calculating baseline adjustments for changes in facility operation that occur during the Guarantee Period. HONEYWELL and CUSTOMER agree that the operating parameters specified are representative of equipment operating characteristics during the Base Year specified in the Agreement. The following data was collected with the assistance of the Facilities Manager and various building personnel and data logging equipment.

Results of data logging equipment are attached hereto, and incoporated herein by reference, as Exhibit G2.

				C	ccupied Sch	edule	-		Unoccupied/I	loliday & Vac	ations Scheo	lule (See note	#2)
Equipment Designation	Zone / Area Served	Qty.	Days	Begin	End	Setpoint	OA Intake	Days	Begin	End	Days	On/Off	Setpoint
Christie Com	plex												
RTU-1	Library	1	M-F	8:00	16:00	70 deg F	50%	M-F	16:00	8:00	S-S	On schedule	60 deg F
RTU-2	Conference Center	1	M-F	6:00	18:00	72 deg F	20%	M-F	18:00	6:00	S-S	Off	66 deg F
RTU-3	Continuing Ed	1	M-F	7:00	16:00	73 deg F	50%	M-F	16:00	7:00	S-S	Off	67 deg F
HV-1	Womens Locker Room	1	M-F	5:00	16:00	72 deg F	10%	M-F	16:00	5:00	S-S	Off	66 deg F
HV-2	Mens Locker Room	1	M-F	5:00	16:00	72 deg F	80%	M-F	16:00	5:00	S-S	Off	66 deg F
AHU-3+4	Gymnasium	2	M-F	6:00	17:00	67 deg F	15%	M-F	17:00	6:00	S-S	Off	62 deg F
HV-4	Learning Center	1	M-F	0:01	14:00	70 deg F	0%	M-F	14:00	0:01	S-S	Off	68 deg F
HV-6	Nursing	1	M-F	7:00	17:30	75 deg F	0%	M-F	17:30	7:00	S-S	Off	65 deg F
HV-7	2nd Floor Offices and Hallway	1	M-F	7:00	21:30	72 deg F	0%	M-F	21:30	7:00	S-S	Off	60 deg F
HV-8	Classrooms 201-203	1	M-F	7:00	21:30	70 deg F	15%	M-F	21:30	7:00	S-S	Off	60 deg F
HV-9	Racketball Court	1	M-F	12:00	12:01	60 deg F	0%	M-F	12:01	12:00	S-S	Off	60 deg F
HV-10	Lecture Hall	1	M-F	6:00	16:30	72 deg F	5%	M-F	16:30	6:00	S-S	Off	66 deg F
HV-110	Room 110	1	M-F	4:00	20:00	70 deg F	0%	M-F	20:00	4:00	S-S	Off	60 deg F
HV-111	Room 111	1	M-F	8:00	16:00	70 deg F	10%	M-F	16:00	8:00	S-S	Off	60 deg F
HV-112	Room 112	1	M-F	6:00	16:00	72 deg F	0%	M-F	16:00	6:00	S-S	Off	66 deg F
TAB-108B	Room 108B	1	M-F	12:00	12:01	72 deg F	5%	M-F	12:01	12:00	S-S	Off	66 deg F
TAB-113	Room 113	1	M-F	7:00	20:00	72 deg F	5%	M-F	20:00	7:00	S-S	Off	66 deg F
TAB-114	Room 114	1	M-F	6:00	20:00	70 deg F	5%	M-F	20:00	6:00	S-S	Off	65 deg F
TAB-115	Room 115	1	M-F	7:00	20:00	72 deg F	5%	M-F	20:00	7:00	S-S	Off	66 deg F
TAB-214	Room 214	1	M-F	6:00	16:00	67 deg F	5%	M-F	16:00	6:00	S-S	Off	60 deg F
HRU-1	Martin Building	1	M-F	0:01	23:59	68 deg F	0%	M-F	23:59	0:01	S-S	Off	65 deg F
UV-1-3	2nd Floor Science Classroom	3	M-F	7:30	16:00	72 deg F	10%	M-F	16:00	7:30	S-S	Off	66 deg F
UV-4	Computer Lab 208	1	M-F	7:00	20:00	72 deg F	0%	M-F	20:00	7:00	S-S	Off	66 deg F
UV-5	Metal Fabrication	1	M-F	6:00	16:30	72 deg F	0%	M-F	16:30	6:00	S-S	Off	66 deg F
TAB-A	Metal Fab Classroom	1	M-F	12:00	12:01	72 deg F	5%	M-F	12:01	12:00	S-S	Off	66 deg F
FC-1-18	Central Offices and Classrooms	18	M-F	7:00	20:00	72 deg F	0%	M-F	20:00	7:00	S-S	Off	66 deg F
FC-19	Student Services Offices	1	M-F	7:00	16:00	72 deg F	15%	M-F	16:00	7:00	S-S	Off	66 deg F
Liebert-1+2	Computer Labs 209+210	2	M-F	7:00	20:00	72 deg F	0%	M-F	20:00	7:00	S-S	Off	66 deg F

BUILDING ROLL-UP JOB: NMCC Total Project ECM Roll-Up DATE: 3/27/2009

ECMs Envelope Night
Lighting Sealing S
661
- PO-1
0
0
5635
0
0
111900
443
0
0
16904
0
0
14010
2403
\$16,413 \$16,904 \$15,165
0
0
0\$ 0\$

ROLL-UP	PROJECT: NMCC	Energy Retroit Project DATE: 3/27/2009	quare Footage= 254,411
BUILDING ROLL-UP	<u>م</u>		Total Project Square Footage=

	Buildings				
BUILDING TOTALS	Christie	Mailman	Residential	Shop	Energy Retrofit Project
	Complex	Trades	Buildings	Buildings	Roll-Up Total
ANNUAL ENERGY SAVINGS					
0% Safety Factor Applied	0	0	0	•	
Calculated Mbtu Saved	7,792	(301)	336	55	7,882
Gauranteed MMBtu Saved	7,580	(331)	329	49	7,627
MECHANICAL KWH Saved	(26,606)	(6'379)	(2,025)	(3,996)	(42,006
MECHANICAL KW Saved	(154)	(61)	0	(4)	(22(
OIL GALLON Saved BEFORE oil heater	64,458	(2,815)	2,829	425	64,896
OIL GALLON Saved by oil heater	2,638	0	1,522	372	4,532
WOOD TONSSaved	(1,047)	0	0	0	(1,047
NATURAL GAS THERMS Saved	0	0	0	0	
Water & Sewer GALLONS Saved	0	0	0	0	
LIGHTING KWH Saved	35,767	35,592	8,767	31,774	111,900
LIGHTING KW Saved	242	182	20	0	443
		0	0		
MECHANICAL KWH Savings \$\$\$	(\$3,331)	(\$1,174)	(\$253)	(\$500)	(\$5,25
MECHANICAL KW Savings \$\$\$	(\$1,536)	\$0	\$0	\$0	(\$1,536)
OIL Savings \$\$\$	\$201,286	(\$8,445)	\$13,054	\$2,388	\$208,28
WOOD Savings \$\$\$	(\$62,833)	\$0	\$0	\$0	(\$62,833
NATURAL GAS Savings \$\$\$	\$0	\$0	\$0	\$0	\$0
WATER & SEWER Savings \$\$\$	\$0	\$0	\$0	\$0	\$0
LIGHTING KWH Savings \$\$\$	\$4,478	\$4,456	\$1,098	\$3,978	\$14,010
LIGHTING KW Savings \$\$\$	\$2,403	\$0	\$0	\$0	\$2,403
TOTAL ENERGY SAVINGS \$\$\$	\$140,467	(\$5,163)	\$13,898	\$5,866	\$155,069
ANNUAL OPERATIONAL SAVINGS	\$0	0\$	0\$	\$0	
		\$0	\$0		
ECM OPERATIONAL Savings \$\$\$	\$0	\$0	\$0	\$0	80
LIGHTING Operational Savings \$\$\$	\$0	\$0	\$0	\$0	\$0
TOTAL OBEDATIONAL SAVING \$55	¢U	υa	ς	ς.	1

		& Flac (Baseline)	
% of Elect. \$ Saved	3.3%		\$292,652
% of Oil \$ Saved	55.2%	\$ Oil (Baseline)	\$377,050
% of LP Gas \$ Saved	0.0%	\$ LP Gas (Baseline)	\$0
% of Natural Gas \$ Saved	i0//IO#	tural Gas (Baseline)	\$0
% of Water/Sewer \$ Saved	0.0%	ter/Sewer (Baseline)	\$0
		\$ Total (Baseline)	\$669,701
	% Units Saved Per Year		
% of Elect. KW Saved	4.1%	Elec KW (Baseline)	5,456
% of Elect. KWH Saved	3.7%	Elec KWH (Baseline)	1,904,200
% of Oil GALLONS Saved	55.2%	BALLONS (Baseline)	125,683
% of L.P. Gas GALLONS Saved	0.0%	BALLONS (Baseline)	0
of Natural Gas THERMS Saved	i0///IU#	THERMS (Baseline)	0
Mater & Course CALL OND Coursed	0 V0/	ALLONS (Baseline)	-

	% Units Saved Per Year		
% of Elect. KW Saved	4,1%	Elec KW (Baseline)	5,456
% of Elect. KWH Saved	3.7%	Elec KWH (Baseline)	1,904,200
% of Oil GALLONS Saved	55.2%	ALLONS (Baseline)	125,683
% of L.P. Gas GALLONS Saved	0.0%	BALLONS (Baseline)	0
% of Natural Gas THERMS Saved	i0//NIO#	THERMS (Baseline)	0
% of Water & Sewer GALLONS Saved	0.0%	BALLONS (Baseline)	0
	Course East Analysis		

	Square Foot Analysis	
	Pre Retrofit	Post Retrofit
Elec \$/Sq Ft/Yr	\$1.15	\$1.11
Oil \$/Sq Ft/Yr	\$1.48	\$0.66
LP Gas \$/Sq Ft/Yr	\$0:00	\$0.25
Natural Gas \$/Sq Ft/Yr	\$0:00	\$0:00
Water & Sewer \$/Sq Ft/Yr	\$0.00	\$0.00
Total Utility Cost \$/Sq Ft/Yr	\$2.63	\$2.02
Elec KW/Sq Ft/Yr	0.0214	0.0206
Elec KWH/Sq Ft/Yr	7.48	7.21
Oil GALLONS/Sq Ft/Yr	0.49	0.22
LP Gas GALLONS/Sq Ft/Yr	0:00	0:00
Natural Gas THERMS/Sq Ft/Yr	0:00	0:00
Water & Sewer GALLONS/Sq Ft/Yr	0:00	0:00

BUILDING ROLL-UP

JOB: NMCC BUILDING: Christie Complex	UA1E: 3/2//2009	suilding Square Footage = 125,541
---	-----------------	-----------------------------------

				<i>a</i> :	6	e.	2	~	~	5	~	~		<i>c</i> .'	0	<u>.</u>	10	2	~	6	~	~			-	c	F
Christie Complex		Roll-Up Total		7,792	7,580	(26,606	(154	64,458	2,638	(1,047	0	0	35,767	242	(\$3,331	(\$1,536	\$201,286	(\$62,833	\$0	\$0 8	\$4,478	\$2,403	\$140,467		80	0\$	05
	Nood	Boiler	Z	6,940	6,940	(67,425)	(185)	59,011		(1,047)	0				(\$8,442)	(\$1,841)	\$177,032	(\$62,833)	\$0				\$103,917		\$0		\$0
:	Boiler	Isolation	z	28	28			236		0	0						\$708	\$0	\$0				\$708		\$0		9
	DHW - HX	Insulation	2	7	7			59		0	0						\$176	\$0	\$0				\$176		\$0		09
ē	ō	Heaters	z			(3,508)	0		2,638						(\$439)	8	\$7,913						\$7,474		\$0		Ş
	Motors	Drives	2			594	0								\$74	\$0							\$74		\$0		9
	Ventilation		z	(1,010)	(1,010)	43,733	31	(8,590)		0	0				\$5,475	\$305	(\$25,771)	ŝ	\$0				(\$19,990)		\$0		9
	C02	Controls	>	1,059	847	0	0	7,202		0	0				\$0	\$0	\$21,605	80 80	\$0				\$21,605		\$0		9
	Night	Setback	z	421	421			3,580		0	0						\$10,741	\$0	\$0				\$10,741		\$0		0
	Envelope	Sealing	z	348	348	0	0	2,961		0	0				\$0	\$0	\$8,882	\$0	\$0				\$8,882		\$0		00
ECMs		Lighting	z										35,767	242							\$4,478	\$2,403	\$6,881			0\$	5
	BUILDING TOTALS		ANNUAL ENERGY SAVINGS	ö	Gauranteed MMBtu Saved	MECHANICAL KWH Saved	MECHANICAL KW Saved	OIL GALLON Saved BEFORE oil heater	OIL GALLON Saved by oil heater	WOOD TONS Saved	NATURAL GAS THERMS Saved	Water & Sewer GALLONS Saved	LIGHTING KWH Saved	LIGHTING KW Saved	MECHANICAL KWH Savings \$\$\$	MECHANICAL KW Savings \$\$\$	OlL Savings \$\$\$	WOOD Savings \$\$\$	NATURAL GAS Savings \$\$\$	WATER & SEWER Savings \$\$\$	LIGHTING KWH Savings \$\$\$	LIGHTING KW Savings \$\$\$	TOTAL ENERGY SAVINGS \$\$\$	ANNUAL OPERATIONAL SAVINGS	ECM OPERATIONAL Savings \$\$\$	LIGHTING Operational Savings \$\$\$	TOTAL OBERATIONAL SAVINGS (SEC

	% Dollars Saved Per Year		
% of Elect. \$ Saved	0.7%	\$ Elec (Baseline)	\$292,652
% of Oil \$ Saved	115.3%	\$ Oil (Baseline)	\$174,608
% of LP Gas \$ Saved	0.0%	\$ LP Gas (Baseline)	\$0
% of Natural Gas \$ Saved	0.0%	\$ Natural Gas (Baseline)	\$0
% of Water/Sewer \$ Saved	0:0%	\$ Water/Sewer (Baseline)	\$0
		\$ Total (Baseline)	\$467,260
	% Units Saved Per Year		
% of Elect. KW Saved	1.6%	Elec KW (Baseline)	5,456
% of Elect. KWH Saved	0.5%	Elec KWH (Baseline)	1,904,200
% of Oil GALLONS Saved	1 15.3%	Oil GALLONS (Baseline)	58,203
% of L.P. Gas GALLONS Saved	0.0%	L.P. Gas GALLONS (Baseline)	0
% of Natural Gas THERMS Saved	i0//ND#	Natural Gas THERMS (Baseline)	0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.007	Mater 9 Course O ALL OND (Decelled)	<

% of Ellert. KVM Suswel 16% Eler KVM Basimen 5.45 % of Cleft. KVM Suswel 0.5% Eler KVM Basimen 1.645 % of Cleft. KVM Suswel 0.5% Eler KVM Basimen 1.05 % of Cleft. KVM Suswel 115.5% Eler KVM Basimen 1.02 % of LP_ Gas ALLONS Basime 0.0% LP_ Gas ALLONS Basime 0.0% % of Material Gas THERNS Saved 0.0% Material Gas THERNS Basemen 0 % of Material Gas THERNS Saved 0.0% Material Gas THERNS Basemen 0		% Units Saved Per Year	
WH Saved 05% Exercities (CMM) Essential 016347 016347.038 Essential Essential 0185 005% 0.05% Essential 0185 0.05% LLP Case GALLONS [Essential] 0185 0.05% Natural Case THERNIS [Essential] 0185 5440 0.05% Water C Sever GALLONS [Essential]	% of Elect. KW Saved	1.6%	Elec KW (Baseline) 5,456
Saved 115.3% CutLONS Easerreit DNS Saved 0.7% LP cost.CLONS Easerreit DNS Saved 0.7% LP cost.CLONS Easerreit ANS Saved 0.0% Natural cast FIERVIS Easerreit DNS Saved 0.0% Vatura f sever CALLONS Easerreit	% of Elect. KWH Saved	0.5%	Elec KWH (Baseline) 1,904,20
DNS Saved 0.0% h AMS Saved #D/V/0! h DNS Saved 0.0% Vate	% of Oil GALLONS Saved	115.3%	Oil GALLONS (Baseline) 58, 203
TMS Saved #DIV/01 1 1 Vate 2015 Saved 0.0% 1 Vate	% of L.P. Gas GALLONS Saved	0:0%	L.P. Gas GALLONS (Baseline) 0
ONS Saved by 0.0%	% of Natural Gas THERMS Saved	i0//\ICH#	Natural Gas THERMS (Baseline) 0
	% of Water & Sewer GALLONS Saved	0:0%	Water & Sewer GALLONS (Baseline) 0

	Square Foot Analysis	
	Pre Retrofit	Post Retrofit
Elec \$/Sq Ft/Yr	\$2.33	\$2.32
Oil \$/Sq Ft/Yr	\$1.39	(\$0.21)
Wood \$/Sq Ft/Yr	\$0:00	\$0.50
Natural Gas \$/Sq Ft/Yr	\$0:00	\$0:00
Water & Sewer \$/Sq Ft/Yr	\$0.00	\$0.00
Total Utility Cost \$/Sq Ft/Yr	\$3.72	\$2.60
Elec KW/Sq Ft/Yr	0.0435	0.0428
Elec KWH/Sq Ft/Yr	15,17	15.09
Oil GALLONS/Sq Ft/Yr	0.46	(20:0)
Wood TONS/Sq Ft/Yr	0:00	0.01
Natural Gas THERMS/Sq Ft/Yr	0:00	0:00
Water & Sewer GALLONS/Sq Ft/Yr	0:00	0:00

UTILITY DATA SHEET

JOB:	NMCC
BUILDING:	Christie Complex
DATE:	3/27/2009

		kWh	kWh	Total kWh		Delivery	Supply		Demand		Total
Read Date	kWh	Delivery	Supply	Charges	 \$/kWh	kWh Rate	kWh Rate	kW	Charge	\$/kW	Charges
7/31/2006	120,800	\$1,671.00	\$7,045.22	\$8,716.22	\$ 0.07215	\$ 0.01383	\$ 0.05832	484	\$3,836.00	\$7.93	\$12,552.22
8/31/2006	119,200	\$1,659.00	\$6,929.22	\$5,129.97	\$ 0.04304	\$ 0.01392	\$ 0.05813	304	\$2,386.00	\$7.85	\$7,515.97
9/30/2006	161,200	\$2,244.00	\$9,369.22	\$4,665.80	\$ 0.02894	\$ 0.01392	\$ 0.05812	438	\$3,438.00	\$7.85	\$8,103.80
10/31/2006	197,200	\$2,745.00	\$11,461.22	\$5,110.62	\$ 0.02592	\$ 0.01392	\$ 0.05812	469	\$3,683.00	\$7.85	\$8,793.62
11/30/2006	186,000	\$5,424.00	\$10,809.22	\$2,388.28	\$ 0.01284	\$ 0.02916	\$ 0.05811	493	\$5,879.00	\$11.92	\$8,267.28
12/31/2006	182,400	\$5,319.00	\$10,600.22	\$2,778.82	\$ 0.01523	\$ 0.02916	\$ 0.05812	514	\$6,127.00	\$11.92	\$8,905.82
1/31/2007	195,600	\$5,703.50	\$17,065.83	\$2,679.94	\$ 0.01370	\$ 0.02916	\$ 0.08725	540	\$6,436.80	\$11.92	\$9,116.74
2/28/2007	179,600	\$5,236.96	\$16,007.80	\$2,445.59	\$ 0.01362	\$ 0.02916	\$ 0.08913	540	\$6,432.03	\$11.92	\$8,877.62
3/31/2007	200,800	\$5,855.13	\$17,896.72	\$2,700.24	\$ 0.01345	\$ 0.02916	\$ 0.08913	510	\$6,083.97	\$11.92	\$8,784.21
4/30/2007	175,600	\$2,444.18	\$15,651.40	\$5,252.91	\$ 0.02991	\$ 0.01392	\$ 0.08913	474	\$3,717.76	\$7.85	\$8,970.67
5/31/2007	164,800	\$2,293.85	\$14,689.12	\$4,460.68	\$ 0.02707	\$ 0.01392	\$ 0.08913	470	\$3,689.50	\$7.85	\$8,150.18
6/30/2007	119,600	\$1,664.71	\$10,661.80	\$5,516.77	\$ 0.04613	\$ 0.01392	\$ 0.08915	470	\$3,689.50	\$7.85	\$9,206.27
2006-7 Total	2,002,800			\$51,846	\$ 0.02589	\$ -	\$ -	5705.6	\$55,398.56	\$9.71	\$107,244
7/31/2007	124,000	\$1,750.16	\$11,824.16	\$13,574.32	\$ 0.10947	\$ 0.01411	\$ 0.09536	294	\$2,442.00	\$8.31	\$16,016.32
8/31/2007	133,200	\$1,880.65	\$12,726.43	\$14,607.08	\$ 0.10966	\$ 0.01412	\$ 0.09554	423	\$3,517.70	\$8.32	\$18,124.78
9/30/2007	156,400	\$2,208.21	\$14,942.03	\$17,150.24	\$ 0.10966	\$ 0.01412	\$ 0.09554	447	\$3,720.70	\$8.32	\$20,870.94
10/31/2007	186,800	\$2,637.43	\$17,845.23	\$20,482.66	\$ 0.10965	\$ 0.01412	\$ 0.09553	458	\$3,810.56	\$8.32	\$24,293.22
11/30/2007	172,400	\$5,061.49	\$16,470.03	\$21,531.52	\$ 0.12489	\$ 0.02936	\$ 0.09553	447	\$5,540.81	\$12.39	\$27,072.33
12/31/2007	170,400	\$5,002.77	\$16,399.99	\$21,402.76	\$ 0.12560	\$ 0.02936	\$ 0.09624	480	\$5,947.20	\$12.39	\$27,349.96
1/31/2008	163,200	\$4,791.39	\$15,917.95		\$ 0.12690	\$ 0.02936	\$ 0.09754	501	\$6,209.87	\$12.39	\$26,919.21
2/29/2008	167,600	\$4,920.57	\$16,346.95		\$ 0.12689	\$	\$ 0.09754	500	\$6,190.04	\$12.39	\$27,457.56
3/31/2008	182,800	\$5,366.83	\$16,548.92	\$21,915.75	\$ 0.11989	0.02936	\$ 0.09053	475	\$5,887.73	\$12.39	\$27,803.48
4/30/2008	160,000	\$2,259.04	\$14,589.39	\$16,848.43	0.10530	0.01412	0.09118	450	\$3,747.33	\$8.32	\$20,595.76
5/31/2008	132,000	\$1,863.71	\$12,068.39	\$13,932.10	0.10555	0.01412	0.09143	450	\$3,747.33	\$8.32	\$17,679.43
6/30/2008	56,800	\$801.96	\$5,196.24	\$5,998.20	0.10560	0.01412	\$ 0.09148	280	\$2,332.26	\$8.32	\$8,330.46
2007-8 Total	1,805,600			\$209,420	\$ 0.11598	\$ 	\$ 	5206.2	\$53,093.53	\$10.20	\$262,513

Meter: Oil #2									
Date	HDD	Gal	Cost	\$/Gal	Date	HDD	Gal	Cost	\$/Gal
Jul-06	17	6,000.00	\$12,869.20	2.14	Jul-07	70	0.00	\$0.00	\$0.00
Aug-06	159	0.00	\$0.00	0.00	Aug-07	125	2,000.00	\$4,531.40	\$2.27
Sep-06	310	400.40	\$763.80	1.91	Sep-07	297	0.00	\$0.00	\$0.00
Oct-06	670	3,000.00	\$5,424.00	1.81	Oct-07	541	6,401.00	\$16,306.23	\$2.55
Nov-06	859	8,602.80	\$15,842.90	1.84	Nov-07	1076	6,022.00	\$17,276.79	\$2.87
Dec-06	1284	5,000.00	\$10,398.00	2.08	Dec-07	1601	10,992.00	\$30,501.28	\$2.77
Jan-07	1627	11,800.00	\$24,539.28	2.08	Jan-08	1608	10,290.00	\$29,239.72	\$2.84
Feb-07	1560	11,401.20	\$23,709.94	2.08	Feb-08	1479	8,052.00	\$22,892.73	\$2.84
Mar-07	1296	10,300.70	\$21,421.34	2.08	Mar-08	1475	7,142.00	\$23,812.17	\$3.33
Apr-07	872	0.00	\$0.00	0.00	Apr-08	755	5,000.10	\$17,749.65	\$3.55
May-07	478	3,000.90	\$6,279.89	2.09	May-08	468	1,000.00	\$3,485.10	\$3.49
Jun-07	136	0.00	\$0.00	0.00	Jun-08	149	0.00	\$0.00	\$0.00
Yearly Totals	9268	59506.00	\$121,248.35	2.04	Yearly Totals	9644	56,899.1	\$ 165,795	\$2.91
2006-07 Total Gallon	s –	59,506			2007-08 Total Gallons		56,899		
2006-08 Average T	9,456	58,203	\$143,522	\$2.47					
2007-08 Lo	ck-In	\$3.00	/ Gallon		1				
2007-00 LU		ψ5.00	/ Gallon						

Kitchen Fuel

Heating Fuel

FUEL SHEET

																									sion	
Pronane	z	AVERAGE	EXPECTED	GALLONS	59,428										TOTAL	ELEC Cost	(\$)	\$ 292,652	\$107,772.96	\$ 184,879					mmBTU Conversion	
Gas	z														SUNDRY	CHARGES	(\$)	\$0	\$0.00	\$0	\$0.00	\$0.00	\$0			
Pronane	z		BASE YR	GALLONS	58,203										Cost/	κw	(\$)	\$9.94	\$0.00	\$9.94	\$0.00	\$0.00	\$9.94			
Gas	z							\$/PER	mmBTU	\$25.51	\$4.54	\$20.97			Annual	KW Cost	(\$)	\$54,246	\$0	\$54,246	\$0	\$0	\$54,246			
Fuel Oil	۲		AVE YEAR	DEG DAYS	9659			BTU/	UNIT	140,000	140,000	140,000			Annual	Demand	(KW)	5,456	0	5,456	0	0	5,456			
	1	Adjustment						\$	GAL	\$3.00	\$0.53	\$2.47			\$/PER	mmBTU	(\$)	\$36.68	\$16.58	\$20.10	\$0.00	\$0.00	\$20.10			
		Heating Fuel Adjustment	BASE YR	DEG DAYS	9,456			BASE YR	COST	\$174,608	\$31,086	\$143,522	2.70/Gallon		BTU/	UNIT	(BTU)	3,413	3,413	3,413	3,413	3,413	3,413			
						_		BASE YR	GAL	58,203	58,203	58,203	ock-in rate of \$		Cost/	KWH	(\$)	\$0.1252	\$0.0566	\$0.0686	\$0.00	\$0.00	\$0.0686	rate		
					r)		ATION	TYPE	FUEL	2	7	2	timated 2009 lo	ORMATION	Annual	KWH Cost	(\$)	\$238,406	\$107,773	\$130,633	\$0	\$0	\$130,633	rrent 10-01-08		
		Xé			to Month/Year)		FUEL INFORMATION BASE YR	BOILER	EFFIC	0.84	0.84	0.84	is to achieve estimated 2009 lock-in rate of \$2.70/Gallon	ELECTRIC INFORMATION	Annual	KWH Used	(KWH)	1,904,200	0	1,904,200	0	0	1,904,200	is to achieve current 10-01-08 rate		
	JOB: NMCC	BUILDING: Christie Complex	DATE: 3/27/2009	Base Yr: 07/06 to 06/08	(Month/Year to			SQUARE	FEET	125,541			Note: Adjustment is			POWER	METER-#	0		Total	Off Peak	Outside Lights	Main	Note: Adjustment is		
	JOB:	BUILDING	DATE	Base Yr:						Adj Base Line	Adjustment	Base Year						Adj Base Line	Adjustment	Base Year						

e	Boiler Effic 0.87	Boiler N/GAS Effic THERMS 0.87 0	N/GAS COST \$0	N/GAS \$/THRM \$0.00	BTU/ UNIT 100,000	\$/PER mmBTU \$0.00
ljustment	0.87	0	\$0	\$0.00	100,000	
	0.87	•	\$0	\$0.00	100,000	\$0.00

Boiler PROPANE PROPANE COST/ BTU/ Effic GALLONS COST GALLON UNIT 1 Line 0.85 0 \$0 \$1.57 91,000 1 nt 0.85 0 \$0 \$0 \$0 \$0 0 nt 0.85 0 \$0 \$0 \$0 \$0 0	Boiler PROPANE PROPANE Effic GALLONS COST 0.85 0 \$0 0.85 0 \$0 0.85 0 \$0 0.85 0 \$0			PROPANE INFORMATIO	FORMATION			
Effic GALLONS COST GALLON UNIT 1 0 0.85 0 \$0 \$1.57 91,000 1 0 0.85 0 \$0 \$0 \$0 \$1.57 91,000 1 0 0.85 0 \$0 \$0 \$0 \$1.57 91,000 1 0 1 000 1 000 1 000 1 0 1 0 1 <td< th=""><th>Effic GALLONS COST 0.85 0 \$0 0.85 0 \$0 0.85 0 \$0</th><th></th><th>Boiler</th><th>PROPANE</th><th>PROPANE</th><th>COST/</th><th>BTU/</th><th>\$/PER</th></td<>	Effic GALLONS COST 0.85 0 \$0 0.85 0 \$0 0.85 0 \$0		Boiler	PROPANE	PROPANE	COST/	BTU/	\$/PER
0.85 0 \$0 \$1.57 91,000 0.85 0 \$0 \$0 \$0 \$0 0.85 0 \$0 \$0 \$0 \$0 \$0 0.85 0 \$0 \$0 \$0 \$0 \$0 \$0	0.85 0 \$0 0.85 0 \$0 0.85 0 \$0		Effic	GALLONS	COST	GALLON	UNIT	mmBTU
nt 0.85 0 \$0 \$0.00 0.85 0 \$0 \$0.00 91.000	nt 0.85 0 \$0 0.85 0 \$0	Adj Base Line	0.85	0	\$0	\$1.57	91,000	\$0.00
0.85 0 \$0 \$0 00 91.000	0.85 0 \$0	Adjustment	0.85	0	\$0	\$0.00		
		sase Year	0.85	0	\$0	\$0.00	91,000	\$0.00

		WOOD CHIP II	INFORMATION	7	
	Boiler	Wood Chip	Wood Chip	Wood Chip	\$/PER
	Effic	Tons	Cost/Ton	BTU/LB	mmBTU
Adj Base Line	0.73	1,232	\$60	4,600	\$0.00
Adjustment	0.73	0	\$0	4,600	
Base Year	0.73	1,232	\$60	4,600	\$0.00

Energy	Abrev.	Units	BTUs	mmBTUs
Electricity	kwh	kWh	3,413	0.003413
Natural Gas	Therm	Therm	100,000	0.1
	CCF	CCF	103,000	0.103
	MCF	MCF	1,030,000	1.03
Energy	Abrev.	Units	BTUs	mmBTUs
#2 Fuel	2	GAL	140,000	0.14
#4 Fuel	4	GAL	145,600	0.1456
#6 Fuel	6	GAL	153,600	0.1536
Coal	Coal	TON	24,000,000	24
Nat Gas	Gas	THERM	100,000	0.1
Propane	Prop	GAL	91,000	0.091
Steam	Stm	LBS	1,150	0.00115
		kLBS	1,150,000	1.15

	High	Том	Average
#2 Fuel	141800	137000	139400
#4 Fuel	148100	143100	145600
#6 Fuel	155900	151300	153600

LIGHTING SUMMARY

JOB:	NMCC
BUILDING:	Christie Complex
DATE:	3/27/2009

ANNUAL ENERGY SAVINGS Units Saved

LIGHTING KWH Saved	35,767
ANNUAL LIGHTING KW Saved	241.7
LIGHTING OPERATIONAL Savings \$\$\$	\$0
EIGITTING OF ERATIONAL Savings \$\$\$	ψU

[Building Totals	
Information provided by	Lighting Base kW/Month	45.8
lighting subcontractor	Lighting Base kWh/Year	66,798
	Lighting kW Saved/Month	26.9
	Months/Year kw Saved	9.0
	Lighting kW Saved/YEAR	241.7
Calculated by lighting vender	Lighting kWh Saved/Year	39,741
	Reduction of run hours %	10%
Calculated by us	Lighting kWh Saved/Year	35,767

Sealing, Weatherstripping, Caulking, Windows & Doors

JOB:	NMCC
BUILDING:	Christie Complex
DATE:	3/27/2009

ANNUAL ENERGY SAVINGS	Units Saved
MECHANICAL KWH Saved	
MECHANICAL KW Saved	
MMBtu Saved BEFORE oil heater	348
ECM OPERATIONAL Savings \$\$\$	

Infiltration

% CFM Used	75%
Existing CFM	1,854
MMBtu Savings	348

Insulation

Area	0
Existing 'U' Value	0.2
Proposed 'U' Value	0.0264
Difference	0.1736
Annual Degree Days	9,659
MMBtu Savings	0

Work to be completed	No. of Units	Perimeter (ft)	Crackage (in)	Conversion to feet		Product
Exit Doors	30	20	1/32	1/12	=	1.5625
RTV's	21	132	1/6	1/12	=	1.833333
Roof/ Wall Joint	1	1186	1/6	1/12	=	16.47222
Exterior Caulking	1	152	1/8	1/12	=	1.583333
OH Door	4	140	1/6	1/12	=	1.944444
Door Sweeps Only	4	3	1/16	1/12	=	0.015625
					Total =	23.41146

Total Crack	Average	Average	Windward	Infiltration
Area	Wind Speed	Wind Speed	Diversity	Savings
(SF)	(MPH)	(FPM)	(%)	(CFM)
А	В	C = B x 5280 / 60	D	E = A x C x D
23.41	1.8	158.4	50%	1854.188

NIGHT SETBACK SAVINGS CALCULATIONS

			_
			Units Saved
	olex		ANNUAL ENERGY SAVINGS
JOB: NMCC	BUILDING: Christie Complex	DATE: 3/27/2009	4
JOB:	BUILDING:	DATE:	

Units Saved	0	0	421	
ANNUAL ENERGY SAVINGS	MECHANICAL KWH Saved	MECHANICAL KW Saved	MMBtu Saved BEFORE oil heater	

\$0.00	
ECM OPERATIONAL Savings \$\$\$	

									Zone S	Zone Schedule											
										Existing	ing	Proposed	sed	Existing	ing	Proposed	peq	Fuel	Savings	lio	Propane
Unit Designation	on Zone / Area Served	aty.	Wall F Area	Floor/Roof Area	Coefficient of Heat Transfer, Wall	%, C Windows T	Coefficient of Heat Transfer, Windows	Below Heated I Space	Coefficient of Heat Transfer, Roof	Occupied Temperature	Unoccupied Temperature	Occupied Temperature	Unoccupied Temperature	Occupied Begin	Occupied End	Occupied Begin	Occupied End	(0 or P)	MMBtu/Yr/ unit N	MMBtu/Yr 1	MMBtu/Yr
					0.10-0.30		0.25-0.50		0.04-0.20											421	•
RTU-1	Library	-	3.300	10.000	0.16	35%	0.35	z	0.08	70	60	70	09	8,00	16:00	8:00	20:00	0	(20)	(20)	0
RTU-2	Conference Center	-	2.500	5,200	0.16	5%	0.35	z	0.08	72	66	72	99	6:00	18:00	9:00	18:00	0	Ω	сı	0
RTU-3	Continuing Ed	£	4,000	6,400	0.16	20%	0.35	≻	0.08	73	67	73	67	7:00	16:00	7:00	16:00	0	0	0	0
HV-1	Womens Locker Room	-	0	2,400	0.16	%0	0.35	≻	0.08	72	99	72	99	5:00	16:00	5:00	16:00	0	0	0	0
HV-2	Mens Locker Roorr	-	0	2,400	0.16	%0	0.35	≻	0.08	72	99	72	99	5:00	16:00	5:00	16:00	0	0	0	0
AHU-3+4	Gymnasium	2	9,000	10,000	0.16	%0	0.35	z	0.08	67	62	67	62	6:00	17:00	6:00	17:00	0	0	0	0
HV-4	Learning Center	-	2,000	7,000	0.16	30%	0.35	~	0.08	70	68	70	60	0:01	14:00	8:00	18:00	0	59	59	0
9-VH	Nursing	-	500	2,500	0.16	%0	0.35	z	0.08	75	65	75	60	7:00	17:30	7:00	16:00	0	8	8	0
HV-7	2nd Floor Offices and Hallway	-	720	1,000	0.16	35%	0.35	z	0.08	72	60	72	60	7:00	21:30	7:00	16:00	0	2	2	0
HV-8	Classrooms 201-203	-	1,800	4,000	0.16	35%	0.35	z	0.08	70	60	70	09	7:00	21:30	7:00	21:30	0	0	0	0
6-VH	Racketball Cour	-	1,800	2,000	0.16	%0	0.35	z	0.08	60	60	60	60	12:00	12:01	12:00	12:01	0	0	0	0
HV-10	Lecture Hall	-	009	2,000	0.16	%0	0.35	~	0.08	72	66	72	09	6:00	16:30	6:00	16:30	0	ю	0	0
HV-110	Room 110	-	1,200	5,300	0.16	10%	0.35	z	0.08	70	60	70	60	4:00	20:00	8:00	16:00	0	17	17	0
HV-111	Room 111	-	1,200	5,300	0.16	10%	0.35	z	0.08	70	60	70	60	8:00	16:00	8:00	16:00	0	0	0	0
HV-112	Room 112	-	3,300	5,300	0.16	10%	0.35	z	0.08	72	66	72	60	6:00	16:00	8:00	16:00	0	37	37	0
TAB-108B	Room 108B	-	1,000	1,500	0.16	35%	0.35	~	0.08	72	99	72	60	12:00	12:01	8:00	16:00	0	25	25	0
TAB-113	Room 113	-	400	800	0.16	15%	0.35	z	0.08	72	66	72	09	7:00	20:00	8:00	16:00	0	9	9	0
TAB-114	Room 114	-	400	800	0.16	15%	0.35	z	0.08	70	65	70	09	6:00	20:00	8:00	16:00	0	5	2	0
TAB-115	Room 115	-	720	800	0.16	15%	0.35	z	0.08	72	66	72	09	7:00	20:00	8:00	16:00	0	8	8	0
TAB-214	Room 214	-	1,100	2,000	0.16	20%	0.35	z	0.08	67	60	67	60	6:00	16:00	8:00	16:00	0	2	7	0
HRU-1	Martin Building	-	12,500	6,600	0.16	35%	0.35	≻	0.08	68	65	68	09	0:01	23:59	2:00	16:00	0	112	112	0
UV-1-3	2nd Floor Science Classrooms	e	720	1,600	0.16	35%	0.35	z	0.08	72	99	72	60	7:30	16:00	7:30	16:00	0	6	27	0
UV-4	Computer Lab 206	-	720	1,600	0.16	20%	0.35	z	0.08	72	99	72	60	7:00	20:00	7:00	20:00	0	9	9	0
UV-5	Metal Fabrication	-	3,500	9,300	0.16	35%	0.35	z	0.08	72	99	72	60	6:00	16:30	6:00	16:30	0	41	41	0
TAB-A	Metal Fab Classroorr	-	1,000	1,200	0.16	20%	0.35	z	0.08	72	99	72	09	12:00	12:01	6:00	16:30	0	29	29	0
FC-1-18	Central Offices and Classrooms	18	400	800	0.16	35%	0.35	~	0.08	72	66	72	09	7:00	20:00	7:00	20:00	0	2	36	0
Liebert-1+2	Computer Labs 209+210	2	400	800	0.16	30%	0.35	z	0.08	72	99	72	60	7:00	16:00	7:00	16:00	0	4	6	0

actions of the weather bins to be used in the deltaTxhour calculation. See note 3. 3TU. The hours are over a years period and the result is converted to millions of BTUs. f Heat Trar

Christie Ventilation

JOB: NMCC BUILDING: Christie Complex DATE: 3/27/2009

ANNUAL ENERGY SAVINGS Units Saved MECHANICAL KWH Saved 43,733 MECHANICAL KW Saved 31 MMBtu Saved BEFORE oil heater (1010)

\$0.00 ECM OPERATIONAL Savings \$\$\$ Equipment Schedule

																	U	ias or		
			Fan		Fan	Existing	Proposed	AC	AC			Proposed		Proposed	Fuel			Propane	k٧	KWH
					kW	CFM		(Y or N or		% Eff.	Occupied	Occupied	Occupied			MMBtu/Y N	MMBtu/Y MI	2	~	
Unit Designation	Zone / Area Served	oty.	(N or E)	Qty. (N or E) HP/Unit	Reading		CFM OA/Unit	Ê	Peak kW	ERVs	Begin	End	Temp	Hrs/Yr					۳	sage/Yr
																	1010			(43,733)
RTU-1	Library	÷	ш	20.00	6.95	6.000	1.200	7	-26.57	%0	8:00	20:00	70.0	2.040	o	(410)	(410)	0		34.190)
RT1-2	Conference Center	•	u	9 50	2 94	1 200	1 200	· >	000	%0	0.9	18:00	72.0	1 530	c	(52)	(52)			6616)
		•			7 6 4	2 760	1 1 26	• •	14 50	/00	00.5	16:00	0.07	1 520) ((000)	, c		(0.0)
				20.02	40.7	3,73U	1,125	- 2	- 14.03	%0	00:7	00:01	13.0	056,1	5 0	()2C()	(12CU)	0 0		(8/0,01
HV-1	Womens Locker Room	-	ш	1.00	0.61	300	006	z	0.00	%0	5:00	16:00	72.0	1,870	С	06	90	0		0
HV-2	Mens Locker Room	-	ш	1.00	0.61	2,400	006	z	0.00	%0	5:00	16:00	72.0	1,870	0	(224)	(224)	0		0
AHU-3+4	Gymnasium	0	ш	4.00	2.46	750	750	z	0.00	%0	6:00	17:00	67.0	1,870	0	0	0	0		0
HV-4	Learning Center	-	ш	5.00	2.43	0	400	z	0.00	0%	8:00	18:00	70.0	1,700	0	51	51	0		0
HV-6	Nursing	-	ш	1.00	1.64	0	750	z	0.00	0%	7:00	16:00	75.0	1,530	0	96	96	0		0
HV-7	2nd Floor Offices and Hallway	-	ш	1.00	1.67	0	120	z	0.00	0%	7:00	16:00	72.0	1,530	0	14	14	0		0
HV-8	Classrooms 201-203	-	ш	1.50	1.02	450	006	z	0.00	0%	7:00	21:30	70.0	2,465	0	85	85	0		0
HV-9	Racketball Court	-	ш	1.00	0.61	0	0	z	0.00	0%	12:00	12:01	60.0	ю	0	0	0	0		0
HV-10	Lecture Hall	-	ш	1.00	0.61	100	200	۲	3.32	%0	6:00	16:30	72.0	1,785	0	85	85	0		3,876
HV-110	Room 110	-	ш	5.00	2.60	0	500	z	0.00	%0	8:00	16:00	70.0	1,360	0	50	50	0	0	0
	Room 111	-	ш	5.00	3.50	500	500	z	0.00	%0	8:00	16:00	70.0	1,360	0	0	0	0		0
	Room 112	-	ш	5.00	2.60	0	500	z	0.00	%0	8:00	16:00	72.0	1,360	0	52	52	0		0
	Room 108B	-	ш	0.05	0.03	20	320	z	0.00	%0	8:00	16:00	72.0	1,360	0	33	33	0		0
	Room 113	-	ш	0.05	0.03	20	320	z	0.00	%0	8:00	16:00	72.0	1,360	0	30	30	0		0
	Room 114	-	ш	0.05	0.03	20	320	z	0.00	%0	8:00	16:00	70.0	1,360	0	28	28	0		0
	Room 115	-	ш	0.05	0.03	20	320	z	0.00	%0	8:00	16:00	72.0	1,360	0	30	30	0		0
FC-214	Room 214	-	ш	0.05	0.03	40	640	z	0.00	%0	8:00	16:00	67.0	1,360	0	54	54	0		0
HRU-1	Martin Building	-	ш	20.00	13.65	0	5,000	z	0.00	50%	7:00	16:00	68.0	1,530	0	269	269	0		0
UV-1-3	2nd Floor Science Classrooms	ო	ш	0.25	0.15	125	375	z	0.00	%0	7:30	16:00	72.0	1,445	0	28	84	0		0
UV-4	Computer Lab 208	-	ш	0.25	0.15	0	300	z	0.00	%0	7:00	20:00	72.0	2,210	0	53	53	0		0
UV-5	Metal Fabrication	-	ш	0.25	0.15	0	450	z	0.00	%0	6:00	16:30	72.0	1,785	0	64	64	0		0
FC-A	Metal Fab Classroom	-	ш	0.05	0.03	20	320	z	0.00	%0	6:00	16:30	72.0	1,785	0	45	45	0		0
UV-1-18	Central Offices and Classrooms	18	ш	0.25	0.15	0	225	z	0.00	%0	7:00	20:00	72.0	2,210	0	40	715	0		0
FC-19	Student Services Offices	-	ш	0.25	0.15	750	1,500	z	0.00	%0	7:00	16:00	72.0	1,530	0	89	89	0		0
Liebert-1+2	Computer Labs 209+210	7	ш	0.25	0.15	0	640	۲	3.54	%0	7:00	20:00	72.0	2,210	0	113	0	0		9,775

Ventilation run hours are based on the new proposed schedules. They are based on a 34 week school heating cycle per year. N

Weather bin data has been used to calculate deltaTxhours. The formula to determine deltaTxhours uses the existing and proposed schedules to determine fractions of the weather bins to be used in the deltaTxhour calculation. See note 3.

3. The deltaTxhours generated by the bin analysis is used in the following formulat to determine MMBTU/yr. CFMx1.08xdeltaTxhours=BTU. The hours are over a years period and the result is converted to millions of BTUs. A delta is calculated between existing and proposed cfm. 4. There are 193 M-F calendar days during the school year, inclusive of holidays.

5. If the equipment is existing and the fan is greater than 3Hp, kW readings are instantaneous during site visit and are assumed to be representative of the systems operation including post project implementation. If the equipment is existing and the fan is less than 3Hp, kW readings are calculated based on an assumed 70% loading and 85% efficiency. 6. Cooling COP is assumed to be 1.

VENTILATION CONTROLS

			Inite Cavod
JOB: NMCC	BUILDING: Christie Complex	DATE: 3/27/2009	ANNULAT ENERGY SAVINGS Thrite Saved
JOB:	BUILDING:	DATE:	AN AN

d % Run Hours % Outside Air	40% 100%	20% 75%	20% 50%	20% 25%	70.0% Weighted average % Ventilation
Units Saved	0	0	1059		\$0.00
NNUAL ENERGY SAVINGS	MECHANICAL KWH Saved	MECHANICAL KW Saved	MMBtu Saved BEFORE oil heater		ECM OPERATIONAL Savings \$\$\$

					Equipmer	Equipment Schedule							Γ
					Weighted Average		Proposed		Proposed	Fuel		ē	Gas or Propane
			CFM	% Eff.	Percent CFM	Occupied		Occupied			MMBtu/Y	MMBtu/Y	MMBtu/Y
Unit Designation	Zone / Area Served	Qty.	OA/Unit	ERVs	٩٥	Begin	Occupied End	Temp	Hrs/Yr	(O or P)	-	-	-
I						I						1059	0
RTU-1	Library	÷	1.200	%0	50%	8:00	20:00	70.0	2.040	0	92	92	0
	Conference Conter		000	200	2007	0.00	10.00	0.04	0001	0 0	1 6	1 0	o c
RTU-2 RTU-3	Conterence Center		1,200	%n	%02	00:6	18:00	0.27	1,530	o c	71	71	
HV-1		•	000	%0	50%	00.4	16:00	72.0	1 870	o c	57	- 29	
HV-2	Mens Locker Room		006	%0	50%	5:00	16:00	72.0	1.870	00	67	67	0 0
AHU-3+4	Gymnasium	2	750	%0	50%	6:00	17:00	67.0	1,870	0	49	98	0
HV-4	Learning Center	-	400	%0	%06	8:00	18:00	70.0	1,700	0	5	5	0
HV-6	Nursing	-	750	%0	20%	7:00	16:00	75.0	1,530	0	29	29	0
HV-7	2nd Floor Offices and Hallway	-	120	%0	20%	7:00	16:00	72.0	1,530	0	4	4	0
HV-8	Classrooms 201-203	-	006	%0	20%	7:00	21:30	70.0	2,465	0	51	51	0
6-VH	Racketball Court	-	0	%0	20%	12:00	12:01	60.0	ю	0	0	0	0
HV-10	Lecture Hall	-	200	%0	20%	6:00	16:30	72.0	1,785	0	30	30	0
HV-110	Room 110	-	500	%0	20%	8:00	16:00	70.0	1,360	0	15	15	0
HV-111	Room 111	-	500	%0	20%	8:00	16:00	70.0	1,360	0	15	15	0
HV-112	Room 112	-	500	%0	20%	8:00	16:00	72.0	1,360	0	16	16	0
FC-108B	Room 108B	-	320	%0	20%	8:00	16:00	72.0	1,360	0	10	10	0
FC-113	Room 113	-	320	%0	20%	8:00	16:00	72.0	1,360	0	10	10	0
FC-114	Room 114	-	320	%0	20%	8:00	16:00	70.0	1,360	0	10	10	0
FC-115	Room 115	-	320	%0	20%	8:00	16:00	72.0	1,360	0	10	10	0
FC-214	Room 214	-	640	%0	20%	8:00	16:00	67.0	1,360	0	18	18	0
HRU-1	Martin Building	-	5,000	50%	20%	7:00	16:00	68.0	1,530	0	81	81	0
UV-1-3	2nd Floor Science Classrooms	e	375	%0	20%	7:30	16:00	72.0	1,445	0	13	38	0
UV-4	Computer Lab 208	-	300	%0	20%	7:00	20:00	72.0	2,210	0	16	16	0
UV-5	Metal Fabrication	-	450	%0	20%	6:00	16:30	72.0	1,785	0	19	19	0
FC-A	Metal Fab Classroom	-	320	%0	20%	6:00	16:30	72.0	1,785	0	14	14	0
UV-1-18	Central Offices and Classrooms	18	225	%0	70%	7:00	20:00	72.0	2,210	0	12	215	0
FC-19 Liahart-1±2	Student Services Offices	- °	1,500 640	%0	90% 70%	00:2	16:00 20:00	72.0	1,530 2 210	0 <	18 34	18	00
רופהפוו- ו+7		N	040	% D	%D1	00.1	20.00	0.77	2,210	5	5	5	>

Weillation run hours are based on the new proposed schedules. They are based on a 34 week school heating cycle per year.
 Weather bin data has been used to calculate deltaTxhours. The formula to determine deltaTxhours uses the proposed schedules to determine fractions of the weather bins to be used in the deltaTxhour calculation. See not seen used to calculate deltaTxhours to determine fractions of the weather bins to be used in the deltaTxhour calculation. See not seen used to calculate deltaTxhours to determine fractions of the weather bins to be used in the deltaTxhour calculation. See not seen used to calculate deltaTxhours to determine fractions of the weather bins to be used in the deltaTxhour calculation. See not seen used to calculate deltaTxhours to determine fractions of the weather bins to be used in the following formula to determine MMBTUNr. %OAXCFMK1.08xdeltaTxhours=BTU. The hours are over a years period and the result is converted to millions of BTUs.

NMCC Exhibit G1 03-09-09 3/27/2009 1:59 PM

ENERGY EFFICIENT MOTOR & VSD SAVINGS CALCULATIONS

JOB:	NMCC		
	Christie Complex		
DATE:	03/27/09		
	UAL ENERGY SAVINGS	Units Saved	
	CHANICAL KWH Saved	594	
	ECHANICAL KW Saved	0.0	
ECM OPE	RATIONAL Savings \$\$\$		
IOTOR CALCULATIONS	LOCATION	Boiler Room	Boiler Room
	MOTOR EXISTING CONDITION EQPT TYPE	Pump	Pump
	EQPTITIPE EQPT#	HWP-1	HWP-2
	HP	1.00	0.00
	ACT H P	2	?
	RATED AMPS	?	?
	AMPS 1	?	?
	AMPS 2	?	?
	KW	?	?
	KVAR	?	?
	KVA	?	?
	PF %	?	?
	VOLTS	230	230
ASSUMPTIONS	0.746		
1. kW was measured for one pump and	Existing	Pump	Pump
applied to the others.	HP	1.00	0.00
Only one pump runs at a time.	Run Hours	2,856	2,856
	Load Factor Motor Eff	0.84	0.84
	Motor Eff.	0.92	
	KWh	1.945 0.7	0.
	Proposed	0.7	0.
	HP	1.0	0.0
	Run Hours	2.856	2.856
	Load Factor	0.84	0.84
	Motor Eff.	0.920	0.920
	kWh	1,945	
	KW	0.7	0.
	Motor kWh Saved	0	0
Monthly kw X six months = annual kw	Monthly Motor KW saved	0.0	0.0
	Annual kw saved	0.0	0.0

OPEED DOWE ON OUR ATIONS			1
SPEED DRIVE CALCULATIONS	DUTY CYCLE X 0.2	0	0
0.2 -	0.3	0.01	0.01
0.3 0.25	0.4	0.03	0.03
0.25	0.5	0.1	0.1
0.15	0.6 0.7	0.2 0.23	0.2 0.23
0.1	0.7	0.23	0.23
0.05	0.9	0.15	0.15
1 2 3 4 5 6 7 8 9	1	0.03	0.03
1 2 5 4 5 6 7 6 5	1.1	1	1
	KWH (new motor	1	1
	0.2	0	0
	0.3	11	0
	0.4 0.5	33 101	0
	0.6	179	0
	0.7	166	0
	0.8	126	0
	0.9 1	41	0
	1	Ζ	0
KWF	USED WITH SPEED DRIVE =	1,286	0
	H USED W/O SPEED DRIVE =	1,945	0
	VSD kWh SAVINGS =	659	0
L	VSD to be installed? Y or N:	Y	Y
	MOTOR INPUT X		
This is the power the motor would use	0.2	0.57	0.57
at part loads with NO speed drive	0.3 0.4	0.67	0.67
	0.4	0.72	0.71
	0.6	0.75	0.72
	0.7	0.8	0.8
	0.8	0.88	0.88
	0.9	0.99	0.99
	1	1.2	1.2
	VFD INPUT X		
This is the power the motor would use at	0.2	0.09	0.09
part loads with a VFD.	0.3	0.11	0.11
	0.4	0.14	0.14
	0.5	0.2	0.2
	0.6 0.7	0.29 0.43	0.29 0.43
	0.7	0.43	0.43
	0.9	0.85	0.85
	1	1.16	1.16
		3.89	3.89
Standard duty cycle distribution	0		
Standard duty cycle distribution	0.01		
	0.03		
	0.1		
	0.2		
	0.23		
	0.25 0.15		
	0.15		
	1		
	0		
	0.05		
	0.16		
	0.23		
	0.23		
	0.2		
	0.09 0.03		
	0.03		
	0.01		

PIPE INSULATION ENERGY SAVINGS CAL

JOB: NMCC BUILDING: Christie Complex DATE: 3/27/2009

							DIDE INGULATING SAVINGS CALCULATIONS	E INSULATING SAVINGS CALCULATIONS
Units Saved			7					
ANNUAL ENERGY SAVINGS Units Saved	MECHANICAL KWH Saved	MECHANICAL KW Saved	MMBtu Saved BEFORE oil heater	ECM OPERATIONAL Savings \$\$\$	Insert data in pink cells only!			

	BTU/HR	Difference	0	0	0	0	0	0	0	0	0	0	0	1,506	0	0	1.506		
Total BTU Loss	Per Ft./Per HR BTU/HR	W/Inslaton	0	0	0	0	0	0	0	0	0	0	0	474	0	0	474		
140 dearee	BTU Loss	Per Ft./Per HR	თ	თ	5	5	10	12	15	20	28	40	58	29	97	120			
		Thickness																	
	Total BTU Loss	Per Ft./Per HR	0	0	0	0	0	0	0	0	0	0	0	1,980	0	0	1.980		MMBtu SAVED 6.9
140 Degree Pipe BTU Loss																		70 deg. ambient temp. and 140 deg. pipe temp.	SAFETY FACTOR 20%
		Lin. Ft.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.00	0.00	0.00	9		HOURS RUN-TIME 5712
		Pipe Size	1/2"	3/4"	-	1-1/4"	1-1/2"	2"	2-1/2"	3"	3-1/2"	4"	5	9	8	10	TOTAL	J	BTU'S/HR SAVED 1,506

Boiler Isolation

JOB:	NMCC
BUILDING:	Christie Complex
DATE:	3/27/2009

ANNUAL ENERGY SAVINGS Units Saved

MECHANICAL KWH Saved	
MECHANICAL KW Saved	
MMBtu Saved BEFORE oil heater	28
ECM OPERATIONAL Savings \$\$\$	

Savings from reduced flue losses

MMBtu Savings	28
Total Hours / Year	5,712
Days/ Year	238
Hours/Day	24
BTU/HR	4,860
DEG/DIF.=	60
BTU/Deg/CFM/hr	1.08
Existing CFM	75
Additional O/A	100%

Notes;

1. These Calculations do not reflect the additional jacket losses that will also be saved with the installation of an isolation

2. These calculations assume a 75 cfm leak loss of air through the boiler's stack system.

Total BTU Loss Per Ft./Per HR

Oil and NG To Wood Conversion

JOB: N			
	Christie Complex	1	
DATE: 3	/27/2009		
ANNUAL ENERGY SAVINGS	Units Saved	1	
MECHANICAL KWH Saved	(67,425)		
MECHANICAL KW Saved	(185)		
Oil MMBtu Saved BEFORE oil heater	6940		
Nat Gas MMBTU Saved	0		
Annual Tons Wood Chip Usage	1047		
ECM OPERATIONAL Savings \$\$\$			
Safety factor/Allowance For Some Oil Use	85%		
		-	
Dec. (5.) 01 0.1		0.11	
Baseline Oil Gallons = Oil Gallons Saved By Other ECM's	,	Gallons/Yr Gallons/Yr	
Net Baseline Oil Gallons		Gallons/Yr	
Convert Oil Gal/Yr to MMBTU/Yr Input		MMBTU/Yr Oil Input	
Convert Oil MMBTU/Yr Input to MMBTU/Yr Output		MMBTU/Yr Oil Output	
Convert MMBTU/Yr Output To MMBTU/Yr Wood Chip Input		MMBTU/Yr Wood Chip Input	
Convert MMBTU/Yr Wood Chip Input To Tons/Yr	1,216	Tons/Yr Wood Chips	
Baseline Natural Gas Therms =	0	Therms/Yr	
Therms Saved By Other ECM's		Therms/Yr	
Net Baseline Therms		Therms/Yr	
Convert Therms/Yr to MMBTU/Yr Input		MMBTU/Yr Oil Input MMBTU/Yr Oil Output	
Convert Gas MMBTU/Yr Input to MMBTU/Yr Output Convert MMBTU/Yr Output To MMBTU/Yr Wood Chip Input		MMBTU/Yr Wood Chip Input	
Convert MMBTU/Yr Wood Chip Input To Tons/Yr		Tons/Yr Wood Chips	
Annual Oil Savings =	69 424	Gallons/Yr	
Annual Natural Gas Savings		Therms/Yr	
Annual Wood Chip Usage =	-	Tons/Year	
Yanaa wood onip osage =	1,202	1013/1041	
	PIPE LOSS (CALCULATIONS	
	FIFE LUSS (ALOULATIONS	
			200 degree
Pipe Size	Lin. Ft.	Ins. Thickness	BTU Loss Per Ft./Per HF
1/2"	0.00	1/2"-1"	19.9287
3/4"	0.00	1/2"-1"	19.9287
1"	0.00	1/2"-1"	20

Lin. Ft.	Thickness	Per Ft./Per HR	W/Inslaton	
0.00	1/2"-1"	19.9287	0	
0.00	1/2"-1"	19.9287	0	
0.00	1/2"-1"	20	0	
0.00	1"	20	0	
0.00	1"	22	0	
0.00	1"-1-1/2"	19	0	
0.00	2"	25	0	
0.00	2"	33	0	
0.00	2"	47	0	
0.00	2"	66	0	
0.00	3"	64	0	
200.00	3"	87	17,493	
0.00		107	0	
0.00	3"	132.858	0	
200			17,493	
	45 deg. ambient temp. an 200 deg. pipe temp.	d		
HOURS RUN-TIME	SAFETY FACTOR	MMBtu		
5712	10%	109.9		
	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 1/2 ^{2-1⁺} 0.00 1/2 ² -1 ⁺ 0.00 1/2 ⁻ 1 ⁺ 0.00 1 ⁺ 0.00 1 ⁺ 0.00 2 ⁺ 0.00 2 ² 0.00 2 ² 0.00 2 ² 0.00 2 ² 0.00 3 ³ 200 3 ³ 200 3 ³ 200 3 ⁴ 45 deg, ambient temp, an 200 deg, pipe temp. HOURS SAFETY RUN-TIME FACTOR	0.00 1/2'-1* 19.9287 0.00 1/2'-1* 19.9287 0.00 1/2'-1* 20 0.00 1''-12'-1* 20 0.00 1* 22 0.00 1* 22 0.00 2* 25 0.00 2* 47 0.00 2* 47 0.00 2* 66 0.00 3* 64 200.00 3* 87 0.00 3* 107 0.00 5*	0.00 1/2'-1* 19.9287 0 0.00 1/2'-1* 19.9287 0 0.00 1/2'-1* 20 0 0.00 1'* 20 0 0.00 1'* 22 0 0.00 1*-1-1/2* 19 0 0.00 2* 25 0 0.00 2* 47 0 0.00 2* 47 0 0.00 2* 46 0 0.00 3* 66 0 200.00 3* 132.858 0 200 3* 107 0 132.858 0 17,493 0.00 3* 107 0 0.00 3* 107 0 132.858 0 17,493 132.858 0 17,493 132.858 0 17,493 0.00 3* 107 0 0.00 3* 107 0 17,493 107 0 0.00 3* 107 0 0.00 3* 107 0 0.00 3* 107 0 0.00 3* 107 0 17,493 107 0 17,493 107 0 0.00 3* 107 0 17,493 107 0 107 0

	MOTOR	LIST					
Motor Function	HP Rating	Voltage	Phase	Use	Amps	KW Demand	KWH
Traveling auger	5	480	3	Intermittent	6.2	3.3	4761
Travel motor	0.33	480	3	Intermittent	0.8	0.2	331
Belt conveyor	2	480	3	Intermittent	2.6	1.4	1970
Metering auger	0.5	90	DC	Continuous	5.5	0.4	2005
Stoker auger	1	480	3	Continuous	1.83	0.7	4010
Overfire air	1.5	480	3	Continuous	2.3	1.0	5911
Underfire air #1	0.33	480	3	Continuous	0.8	0.2	1323
Underfire air #2	0.33	480	3	Continuous	0.8	0.2	1323
Underfire air #3	0.33	480	3	Continuous	0.8	0.2	1323
Underfire air #4	0.33	480	3	Continuous	0.8	0.2	1323
Induced draft fan	15	480	3	Continuous	17.5	7.2	41237
Air compressor	5	480	3	Intermittent	6.2	3.3	1904
Total Electric						18.5	67425

Notes: Boiler run hours are based on 24 HRS/Day x 7 Days/Wk x 34 Wks/Yr = Intermittent equipment was given a 25% run time factor. ID Fan was given a 60% load factor Air compressor was given a 10% run time factor. 5712

Manufacturer's Specifications:

	Count	HP	Hours	Speed	Efficiency	KWH	KW	
ID	1	24.975	8760	50%	96%	21,251	18.63135	75
Hydraulic	1	9.99	2920	100%	94%	23,150	7.45254	30
Metering	1	1.665	8760	50%	91%	1,495	1.24209	5
Elev	1	2.331	4380	100%	91%	8,370	1.738926	7
Feed	2	0.4995	8760	100%	88%	7,419	0.745254	1.5
Ash	1	0.999	4380	30%	88%	100	0.745254	3
Splitter	1	0.333	8760	100%	88%	2,473	0.248418	1
Receiving	1	0.999	4380	100%	88%	3,709	0.745254	3
		41.7915				67,967	31.54909	

OIL HEATER SAVINGS CALCULATIONS

JOB:	NMCC
BUILDING:	Christie Complex
DATE:	3/27/2009

ANNUAL ENERGY SAVINGS	Units Saved
MECHANICAL KWH Saved	(3,508)
MECHANICAL KW Saved	
GALLONS OIL SAVED WITH oil heater	2,638
ECM OPERATIONAL Savings \$\$\$	

Location: Boiler:	Christie Complex Primary
Base Gallons consumed	58,203
Total gallons saved BEFORE heater	5,447
Net base gallons	52,756
Oil heater savings=5% of net gals	5.0%
Gallons Saved	2,638
kWh to Heat Oil @ 70 watt/gal	3508

BUILDING ROLL-UP JOB: NMCC BUILDING: Mailman Trades DATE: 3727/2009

Building Square Footage = 44,734

Molluna Tundan		Koll-Up I otal			(301)	(331)	(6,379)	(61)	(2,815)	0	0	0	0	35,592	182	(\$1,174)	\$0	(\$8,445)	\$0	\$0	\$0	\$4,456	\$0	(\$5,163)		\$0	\$0	\$0	
	Motors	Urives	:	Z			(6,379)	(61)								(\$1,174)	\$0							(\$1,174)		\$0		\$0	۲
	Ventilation		:	z	(972)	(972)	0	0	(8,262)		0	0				\$0	\$0	(\$24,787)	\$0	\$0				(\$24,787)		\$0		\$0	۲
	C02	Controls		N	352	352	0	0	2,996		0	0				\$0	\$0	\$8,987	\$0	\$0				\$8,987		\$0		\$0	٨
	Night	Setback	;	٢	150	120			1,022		0	0						\$3,066	\$0	\$0				\$3,066		\$0		20	٢
	Envelope	seaing		z	168	168	0	0	1,430		0	0				0\$	\$0	\$4,289	\$0	\$0				\$4,289		\$0		0\$	۸
ECMs		Lighting	:	N										35,592	182							\$4,456	\$0	\$4,456			\$0	20\$	٨
	5 TOTALS		ANNUAL ENERGY SAVINGS	Safety Factor Applied	Calculated MMBtu Saved	Gauranteed MMBtu Saved	MECHANICAL KWH Saved	MECHANICAL KW Saved	OIL GALLON Saved BEFORE oil heater	OIL GALLON Saved by oil heater	PROPANE GALLON Saved	NATURAL GAS THERMS Saved	Water & Sewer GALLONS Saved	LIGHTING KWH Saved	LIGHTING KW Saved	MECHANICAL KWH Savings \$\$\$	MECHANICAL KW Savings \$\$\$	OIL Savings \$\$\$	PROPANE Savings \$\$\$	NATURAL GAS Savings \$\$\$	WATER & SEWER Savings \$\$\$	LIGHTING KWH Savings \$\$\$	LIGHTING KW Savings \$\$\$	TOTAL ENERGY SAVINGS \$\$\$	ANNUAL OPERATIONAL SAVINGS	ECM OPERATIONAL Savings \$\$\$	LIGHTING Operational Savings \$\$\$	TOTAL OPERATIONAL SAVINGS \$\$\$	INCLUDE ECM ?
	BUILDING TOTALS			20%	TITUTIO																								

	\$0	\$41,561	\$0	\$0	\$0	\$41,561
	(Baseline)	l (Baseline)	(Baseline)	(Baseline)	(Baseline)	\$ Total (Baseline)
	\$ Elec (B	1!O \$	\$ LP Gas (Baseli	\$ Natural Gas (E	\$ Water/Sewer (\$ Total
% Dollars Saved Per Year	0:0%	-20.3%	0:0%	0:0%	0:0%	
	% of Elect. \$ Saved	% of Oil \$ Saved	% of LP Gas \$ Saved	% of Natural Gas \$ Saved	% of Water/Sewer \$ Saved	

	% OIIIIS SAVEU FEI TEAI		
% of Elect. KW Saved	#DIV/0!	Elec KW (Baseline)	0
% of Elect. KWH Saved	i0//IC#	Elec KWH (Baseline)	0
% of Oil GALLONS Saved	-20.3%	Oil GALLONS (Baseline)	13,854
% of L.P. Gas GALLONS Saved	0:0%	L.P. Gas GALLONS (Baseline)	0
% of Natural Gas THERMS Saved	0.0%	Natural Gas THERMS (Baseline)	0
% of Water & Sewer GALLONS Saved	0.0%	Water & Sewer GALLONS (Baseline)	0

	Square Foot Analysis	
	Pre Retrofit	Post Retrofit
Elec \$/Sq Ft/Yr	\$0.00	(\$0.07)
Oil \$/Sq Ft/Yr	\$0.93	\$1.12
LP Gas \$/Sq Ft/Yr	\$0.00	\$0.00
Natural Gas \$/Sq Ft/Yr	\$0.00	\$0.00
Water & Sewer \$/Sq Ft/Yr	\$0.00	\$0.00
Total Utility Cost \$/Sq Ft/Yr	\$0.93	\$1.04
Elec KW/Sq Ft/Yr	0:0000	(0.0027)
Elec KWH/Sq Ft/Yr	0.00	(0.59)
Oil GALLONS/Sq Ft/Yr	0.31	0.37
LP Gas GALLONS/Sq Ft/Yr	0.00	0:00
Natural Gas THERMS/Sq Ft/Yr	0.00	0:00
Water & Sewer GALLONS/Sq Ft/Yr	0:00	0:00

UTILITY DATA SHEET

JOB: NMCC BUILDING: Mailman Trades DATE: 3/27/2009

		kWh	kWh	Total kWh		Delivery	Supply		Demand		Total
The campus is m	kWh	Delivery	Supply	Charges	\$/kWh	kWh Rate	kWh Rate	kW	Charge	\$/kW	Charges
07/25/07											
08/24/07											
09/26/07											
10/24/07	The campu	s is main mete	ered only. Se	e Christie Comp	lex Utility Dat	a for the electrical	usage for the car	npus.			
11/27/07											
12/26/07											
01/24/08											
02/22/08											
03/24/08											
04/23/08											
05/22/08											
03/22/00											
06/23/08											

Meter: WES Oil #2 Date	HDD	Gal	Cost	\$/Gal	Date	HDD	Gal	Cost	\$/Gal
Date	HUU	Gai	COSI	¢/Gai	Date		Gai	COSI	ə/Gai
Jul-06	17	4,500.00	\$9,683.15	2.15	Jul-07	70	0.00	\$0.00	\$0.00
Aug-06	159	0.00	\$0.00	0.00	Aug-07	125	0.00	\$0.00	\$0.00
Sep-06	310	0.00	\$0.00	0.00	Sep-07	297	0.00	\$0.00	\$0.00
Oct-06	670	499.90	\$903.82	1.81	Oct-07	541	0.00	\$0.00	\$0.00
Nov-06	859	2,100.10	\$3,864.97	1.84	Nov-07	1076	2,033.00	\$5,974.99	\$2.94
Dec-06	1284	1,200.20	\$2,495.94	2.08	Dec-07	1601	4,012.00	\$10,797.45	\$2.69
Jan-07	1627	2,600.70	\$5,408.42	2.08	Jan-08	1608	3,537.00	\$9,736.33	\$2.75
Feb-07	1560	3,477.10	\$7,230.98	2.08	Feb-08	1479	2,547.00	\$7,234.93	\$2.84
Mar-07	1296	1,200.50	\$2,496.56	2.08	Mar-08	1475	0.00	\$0.00	\$0.00
Apr-07	872	0.00	\$0.00	0.00	Apr-08	755	0.00	\$0.00	\$0.00
May-07	478	0.00	\$0.00	0.00	May-08	468	0.00	\$0.00	\$0.00
Jun-07	136	0.00	\$0.00	0.00	Jun-08	149	0.00	\$0.00	\$0.00
Yearly Totals	9268	15578.50	\$32,083.84	2.06	Yearly Totals	9644	12,129.0	\$ 33,744	\$2.78
2006-07 Total Gallo	ns	15,579			2007-08 Total Gallons		12,129		
2004-06 Average	9,456	13,854	\$32,914	\$2.38					
2007-08 Lo	ck-In	\$3.00	/ Gallon						

	4
	duin
-	1
Щ	5
ш	
	4
R	1040
_	
Ш	44000
=	2
<u> </u>	ŝ
ш.	÷

Insert data in pink cells only!	nk cells only!
JOB:	JOB: NMCC
BUILDING:	BUILDING: Mailman Trades
DATE:	DATE: 3/27/2009
Base Yr:	Base Yr: 07/06 to 06/08
	(Month/Year to Month/Year)

z				
٨		AVE YEAR	DEG DAYS	9659
	Heating Fuel Adjustment	BASE YR	DEG DAYS	9.456

AVERAGE EXPECTED GALLONS 14,145

BASE YR GALLONS 13,854

Gas Propane

Gas Propane

Fuel Oil >

Heating Fuel

Kitchen Fuel

z

z

|^{z)}

		FUEL INFORM	ATION					
		BASE YR						
	SQUARE	BOILER	түре	BASE YR	BASE YR	\$	BTU/	\$/PER
	FEET	EFFIC	FUEL	GAL	COST	GAL	UNIT	mmBTU
Adj Base Line	44,734	0.84	2	13,854	\$41,561	\$3.00	140,000	\$25.51
Adjustment		0.84	2	13,854	\$8,647	\$0.62	140,000	\$5.31
Base Year		0.84	2	13,854	\$32,914	\$2.38	140,000	\$20.20
	Note: Adjustment	t is to achieve cu	rrent 2007 lo	ck-in rate of \$2.5	23/Gallon			

ELECTRIC INFORMATION Annual Annual Cost/ POWER KWH Used KWH Cost KWH	ELECTRIC INFORMATION Annual Annual KWH Used KWH Cost
POWER	POWER

TOTAL ELEC Cost (\$)

\$0.00

SUNDRY CHARGES (\$) \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0 \$0

Cost/ KW (\$) \$0.00 \$0.00 \$0.00 \$0.00 \$0.00

ŝ

		Annual	Annual	Cost/	BTU/	\$/PER	Annual	Annual
	POWER	KWH Used	KWH Cost	KWH	UNIT	mmBTU	Demand	KW Cost
	METER-#	(KWH)	(\$)	(\$)	(BTU)	(\$)	(KW)	(\$)
Adj Base Line	0	0	\$0	\$0.1252	3,413	\$36.68	0	\$0
Adjustment		0	\$0	\$0.1252	3,413	\$36.68	0	\$0
Base Year	Total	0	\$0	\$0.000	3,413	\$0.00	0	\$0
	Off Peak	0	\$0	\$0.00	3,413	\$0.00	0	\$0
	Outside Lights	0	\$0	\$0.00	3,413	\$0.00	0	\$0
	Main	0	\$0	\$0.000	3,413	\$0.00	0	\$0
	Note: Campus is	main metered o	nly. See Christi	ie Complex Util	ity and Fuel S	theets for data.		

сщ.
B
ъ
<u> </u>
9
÷
ŝ
6
ē
<u> </u>
S
_
Φ

ш.
_
ъ
C
B
~
₽.
÷.
÷=
\supset
T
× .
Φ
7
~
C
0
Ó.
0
Ð
-
io –
Ξ.
-
σ
8
ő
ly. S
ly. S
d only. S
ly. S
d only. S
d only. S
d only. S
tered only. S
tered only. S
tered only. S
tered only. S
tered only. S
tered only. S
tered only. S
tered only. S
tered only. S
tered only. S
tered only. S
tered only. S
tered only. S
tered only. S
tered only. S
tered only. S
tered only. S

	N/GAS INFOF	RMATION				
	Boiler	N/GAS	_	N/GAS	BTU/	\$/PER
	Effic	Effic THERMS	COST	\$/THRM	UNIT	mmBTU
Adj Base Line	0.85	0	\$0	\$0.00	100,000	\$0.00
Adjustment	0.85	0	\$0	\$0.00	100,000	
Base Year	0.85	•	\$0	\$0.00	100,000	\$0.00

		PROPANE IN	FORMATION			
	Boiler	PROPANE	PROPANE	COST/	BTU/	\$/PER
	Effic	GALLONS	COST	GALLON	UNIT	mmBTU
dj Base Line	0.85	0	\$0	\$1.57	91,000	\$0.00
djustment	0.85	0	\$0	\$0.00		
ase Year	0.85	0	\$0	\$0.00	91,000	\$0.00

	mmBTU Conversion	ersion		
	Energy			
Energy	Abrev.	Units	BTUS	mmBTUs
Electricity	hwh	kWh	3,413	0.003413
Natural Gas	Therm	Therm	100,000	0.1
	CCF	CCF	103,000	0.103
	MCF	MCF	1,030,000	1.03
Energy	Abrev.	Units	BTUs	mmBTUs
#2 Fuel	2	GAL	140,000	0.14
#4 Fuel	4	GAL	145,600	0.1456
#6 Fuel	9	GAL	153,600	0.1536
Coal	Coal	TON	24,000,000	24
Nat Gas	Gas	THERM	100,000	0.1
Propane	Prop	GAL	91,000	0.091
Steam	Stm	LBS	1,150	0.00115
		kLBS	1,150,000	1.15

	High	Low	Average
#2 Fuel	141800	137000	139400
#4 Fuel	148100	143100	145600
#6 Fuel	155900	151300	153600

LIGHTING SUMMARY

JOB:	NMCC
BUILDING:	Mailman Trades
DATE:	3/27/2009

ANNUAL ENERGY SAVINGS	Units Saved
LIGHTING KWH Saved	35,592
ANNUAL LIGHTING KW Saved	181.5
LIGHTING OPERATIONAL Savings \$\$\$	\$0

	Building Totals	
Information provided by	Lighting Base kW/Month	47.5
lighting subcontractor	Lighting Base kWh/Year	81,131
	Lighting kW Saved/Month	20.2
	Months/Year kw Saved	9.0
	Lighting kW Saved/YEAR	181.5
Calculated by lighting vender	Lighting kWh Saved/Year	39,547
	Reduction of run hours %	10%
Calculated by us	Lighting kWh Saved/Year	35,592

Sealing, Weatherstripping, Caulking, Windows & Doors

JOB:	NMCC
BUILDING:	Mailman Trades
DATE:	3/27/2009

ANNUAL ENERGY SAVINGS	Units Saved
MECHANICAL KWH Saved	l
MECHANICAL KW Saved	I
MMBtu Saved BEFORE oil heater	168
ECM OPERATIONAL Savings \$\$\$	(

Infiltration

% CFM Used	75%
Existing CFM	895
MMBtu Savings	168

Insulation

Area	0
Existing 'U' Value	0.2
Proposed 'U' Value	0.0264
Difference	0.1736
Annual Degree Days	7,327
MMBtu Savings	0

Vork to be completed	No. of Units	Perimeter (ft)	Crackage (in)	Conversion to feet		Product
Exit Doors	14	20	1/16	1/12	=	1.458333
RTV's	7	40	1/6	1/12	=	0.555556
Roof/ Wall Joint	1	381	1/6	1/12	=	5.291667
OH Door	6	288	1/6	1/12	=	4
Sweeps only (Doors)	-	0	1/16	1/12	=	0
					Total =	11.30556
nfiltration Saving:					Total =	11.30556
nfiltration Saving: Total Crack	Average	Average	Windward	Infiltration	Total =	11.30556
	Average Wind Speed	Average Wind Speed	Windward Diversity		Total =	11.30556
Total Crack				Infiltration	Total =	11.30556
Total Crack Area	Wind Speed	Wind Speed	Diversity	Infiltration Savings	Total =	11.30556

NIGHT SETBACK SAVINGS CALCULATIONS

NMCC	Christie Complex	3/27/2009	
JOB:	BUILDING:	DATE:	

Units Saved	0	0	150	\$0.00
ANNUAL ENERGY SAVINGS	MECHANICAL KWH Saved	MECHANICAL KW Saved	MMBtu Saved BEFORE oil heater	ECM OPERATIONAL Savings \$\$\$

Г

Image: stand Stand Ended	Zone / Area algnation Served Qty. Deeal Classroom 1 Automative 2 Plastroom 2 Classroom 1 Classroom 1 Classroom 1 Classroom 1 Classroom 1 Classroom 2 Classroom 2 C	T.		Coefficient of Heat Br Transfer, Windows 0.25-0.50	elow Heated		Exist	ing	Propo	sed	Exis	ting	Propo	bsed	1010	Savinge		
Zare / Max Zare /	Zone / Area agrantion Served Qty. Deeel Classroom 1 Automative 2 Datasroom 2 Classroom 1 Classroom 1 Classroom 1 Classroom 1 Classroom 1 Classroom 2 Classroom 2 C	Ħ		Coefficient of Heat Be Transfer, Windows 0.25-0.50	elow Heated							,				of ILADO		Propane
Deser Classion 1 100 730 0.10 15% 0.35 N 0.06 67 62 8.00 12.00 8.00 16.00 0 9 Automation 2 160 730 0.10 15% 0.35 N 0.06 67 62 8.00 12.00 8.00 1600 0 6 7 1<	Desal Classroom 1 Automative Classrooms 2 Plumbing 4 Heating Classroom 1 Classroom 1 Classrooms 2 Classrooms	0.10 0.10	15%	100	Space		Occupied Temperature	Unoccupied Temperature		Unoccupied Temperature		Occupied End		Occupied End	(0 or B		MMBtu/Yr 150	MMBtu/Y 0
1 1 2000 100 150 100	Classroom Classroom Healing Classroom Wedrig Classroom C	0.10		0.35	z	0.08	67	99	67	62	8:00	12:00	8:00	16:00	0	6	6	0
Henton (Methon) 1 100 720 171 860 170 <	Classroom 1 Vedding Vedding Classroom 1 Res Const Classrooms 2 Classrooms 2		15%	0.35	z	0.08	68	62	68	62	8:00	12:00	8:00	16:00	0	9	12	0
Watering Watering Res Corrist 1 1,000 750 0,10 15% 0.35 Y 0.08 62 63 70 15,00 16,00 0 18,00 16,00 0 18,00 16,00 0 18,00 16,00 0 18,00 16,00 0 18,00 16,00 0 18,00 16,00 0 18,00 16,00 0 18,00 16,00 <td>V exaning Classroom 1 Res Const 2 Classrooms 2</td> <td>0.10</td> <td>15%</td> <td>0.35</td> <td>z</td> <td>0.08</td> <td>68</td> <td>62</td> <td>68</td> <td>62</td> <td>12:00</td> <td>12:01</td> <td>8:00</td> <td>16:00</td> <td>0</td> <td>9</td> <td>9</td> <td>0</td>	V exaning Classroom 1 Res Const 2 Classrooms 2	0.10	15%	0.35	z	0.08	68	62	68	62	12:00	12:01	8:00	16:00	0	9	9	0
New Curries Z 650 730 0.10 0% 0.35 N 0.00 62 68 62 69 62 600 16:00 16:00 <th< td=""><td>Classrooms 2</td><td>0.10</td><td>15%</td><td>0.35</td><td>≻</td><td>0.08</td><td>68</td><td>62</td><td>68</td><td>62</td><td>12:00</td><td>12:01</td><td>8:00</td><td>16:00</td><td>0</td><td>18</td><td>18</td><td>0</td></th<>	Classrooms 2	0.10	15%	0.35	≻	0.08	68	62	68	62	12:00	12:01	8:00	16:00	0	18	18	0
Diseat 1 3.500 6.500 0.10 5% 0.35 N 0.012 67 62 8.00 16.00 8.00 16.00 6.00 16.00 <		0.10	%0	0.35	z	0.08	68	62	89	62	8:00	16:00	8:00	16:00	0	0	0	0
Pumplegt 1 2500 4,500 0.10 0% 0.35 N 0.06 66 52 66 52 100 100 0	Diesel 1 Automative 1	0.10	5% 5%	0.35 0.35	z z	0.12	67 68	66 67	67 68	62 67	8:00 00:8	16:00 16:00	8:00	16:00	0 0	25 0	25 0	0 0
Healing 1 3.500 4.500 0.10 0% 0.35 N 0.08 68 62 62 12.00 12.01 8.00 16.00 0 48 Welfing 1 2.800 4.500 0.10 0% 0.35 Y 0.08 68 62 68 62 12.00 12.01 8.00 16.00 0 19 Welfing 2 2.800 10.000 0.10 5% 0.35 N 0.08 68 62 68 62 5.00 16.00 8.00 16.00 0 7	Plumbing +				:		2	ł	2	ł					•	•	,	,
Welding 1 2,800 4,500 0,10 0% 0.35 Y 0.08 68 62 12.00 12.01 6.00 16.00 0 19 Res Const 2 2,800 10,000 0,10 5% 0.35 N 0.08 68 62 6.00 16.00 16.00 0 7	Heating 1	0.10	%0	0.35	z	0.08	68	62	68	62	12:00	12:01	8:00	16:00	0	48	48	0
Res Const 2 2,800 10,000 0.10 5% 0.35 N 0.08 68 62 68 62 5.00 16.00 8:00 16:00 0 7	Welding 1	0.10	%0	0.35	≻	0.08	68	62	68	62	12:00	12:01	8:00	16:00	0	19	19	0
	Res Const 2	0.10	5%	0.35	z	0.08	68	62	68	62	5:00	16:00	8:00	16:00	0	7	44	0

is of the weather bins to be used in the deltaTxhour calculation. See note 3. The hours are over a years period and the result is converted to millions of BTUs. nours uses the existing and proposed schedules to determine MMBTU/yr, U.Coefficient of Heat TransferxAreaxdeltaTxhour Weather bin data has been used to calculate deltaTxhours. The deltaTxhours generated by the bin analysis is used in th Areas of floors, walls, windows and roofs are estimated from

New Ventilation Energy Cost

JOB: NMCC	DING: Mailman Trades	DATE: 3/27/2009	
	BUILD		

ANNUAL ENERGY SAVINGS Units Sav MECHANICAL KWH Saved 0	Units Sav	0
	ANNUAL ENERGY SAVINGS	MECHANICAL KWH Saved

eo

- 0 (972) MECHANICAL KW Saved MMBtu Saved BEFORE oil heater
- \$0.00 ECM OPERATIONAL Savings \$\$\$

				Í				Equi	Equipment Schedule	alule										
																		Gas or		
			Fan		Fan	Existing	Proposed	AC	A/C			Proposed		Proposed	Fuel		ii	Propane	kW	КWH
					kW	CFM	-	Y or N or		% Eff.	Occupied	Occupied	Occupied		(O or M	1MBtu/Yr/		2	Jsage/	
Unit Designation	Zone / Area Served	oty V	(N or E)	Qty (NorE) HP/Unit	Reading	OA/Unit	CFM OA/Unit	ш	Peak kW	ERVs	Begin	End	Temp	Hrs/Yr		unit	MMBtu/Yr 1	MMBtu/Yr		Usage/Yr
											I									0
UV-1	Diesel Classroom	÷	ш	0.25	0.15	0	225	z	0.00	%0	8:00	16:00	67.0	1,360	0	24	21	0	0	0
UV-2+5	Automative Classrooms	0	ш	0.25	0.15	0	225	z	0.00	%0	8:00	16:00	68.0	1,360	0	21	42	0	0	0
UV-3	Plumbing + Heating Classroom	-	ш	0.25	0.15	0	225	z	0.00	%0	8:00	16:00	68.0	1,360	0	21	21	0	0	0
UV-4	Welding Classroom	-	ш	0.25	0.15	0	225	z	0.00	%0	8:00	16:00	68.0	1,360	0	21	21	0	0	0
UV-6+7	Res Const Classrooms	0	ш	0.25	0.15	0	225	z	0.00	%0	8:00	16:00	68.0	1,360	0	21	42	0	0	0
HV-1	Diesel	-	ш	5.00	2.96	975	1,950	z	0.00	%0	8:00	16:00	67.0	1,360	0	89	89	0	0	0
HV-2	Automative	-	ш	5.00	3.42	1,200	2,400	z	0.00	%0	8:00	16:00	68.0	1,360	0	113	113	0	0	0
HV-3	Plumbing + Heating	-	ш	4.00	2.46	450	1,350	z	0.00	%0	8:00	16:00	68.0	1,360	0	127	127	0	0	0
HV-4	Welding	-	ш	10.00	6.14	450	2,250	z	0.00	%0	8:00	16:00	68.0	1,360	0	212	212	0	0	0
HV-5	Res Const	0	ш	0.05	0.03	0	1,500	z	0.00	%0	8:00	16:00	68.0	1,360	0	141	283	0	0	0

sed schedules. They are based on a 34 week school heating cycle per year. ilation run hours are based on the new prop

a Thours. The formula to determine deta Txhours uses the existing and proposed schedules to determine fractions of the weather bins to be used in the detaTxhour calculation. See note 3. used in the following formulat to determine MMBTU/yr. CFMxt.08xdeltaTxhours=BTU. The hours are over a years period and the result is converted to millions of BTUs. A deta is calculated between existing and proposed cfm. 3 year, inclusive of holidays. inerated by the bin an The deltaTx

ere are 193 M-F calendar days

ent is existing and the fam is greater than 3Hp, kW readings are instantaneous during site visit and are assumed to be representative of the systems operation including post project implementation. If the equipment is existing and the fam is less than 3Hp, kW readings are 3 on an assumed 70% loading and 85% efficiency. If the equipment is existing and the fan is calculated based on an assumed 70⁵ 6. Cooling COP is assumed to be 1.

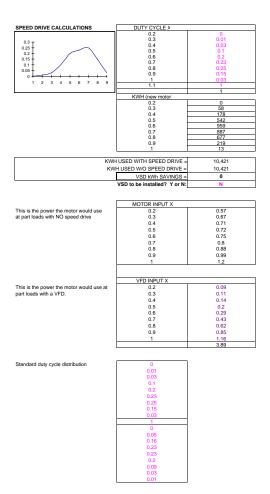
NMCC Exhibit G1 03-09-09 3/27/2009 1:59 PM

Mailman CO2 Controls

VENTILATION CONTROLS

NMCC	BUILDING: Mailman Trades	DATE: 3/27/2009
JOB: NMCC	BUILDING: Mai	DATE: 3/27

ANNUAL ENERGY SAVINGS Units Saved	Units Saved	% Run Hours	% Run Hours % Outside Air
MECHANICAL KWH Saved	0	40%	100%
MECHANICAL KW Saved	0	20%	75%
MMBtu Saved BEFORE oil heater	352	20%	50%
		20%	25%
ECM OPERATIONAL Savings \$\$\$	\$0.00	70.0%	Weighted average % Ventilation


					Equip	Equipment Schedule	le						
					Weighted Average		Proposed		Proposed	Fuel		io	Gas or Propane
Unit Designation	n Zone / Area Served	aty.	CFM OA/Unit	% Eff. ERVs	Percent CFM OA	Occupied Begin	Occupied End	Occupied Temp	Hrs/Yr	(O or P)	MMBtu/Yr	MMBtu/Yr	MMBtu/Yr
I												352	0
UV-1	Diesel Classroom	÷	225	%0	%02	8:00	16:00	67.0	1,360	0	9	9	0
UV-2+5	Automative Classrooms	2	225	%0	%02	8:00	16:00	68.0	1,360	0	9	13	0
UV-3	Plumbing + Heating Classroom	÷	225	%0	20%	8:00	16:00	68.0	1,360	0	9	9	0
UV-4	Welding Classroom	-	225	%0	20%	8:00	16:00	68.0	1,360	0	9	9	0
UV-6+7	Res Const Classrooms	2	225	%0	20%	8:00	16:00	68.0	1,360	0	9	13	0
HV-1	Diesel	-	1,950	%0	20%	8:00	16:00	67.0	1,360	0	54	54	0
HV-2	Automative	-	2,400	%0	20%	8:00	16:00	68.0	1,360	0	68	68	0
HV-3	Plumbing + Heating	-	1,350	%0	20%	8:00	16:00	68.0	1,360	0	38	38	0
HV-4	Welding	-	2,250	%0	20%	8:00	16:00	68.0	1,360	0	64	64	0
HV-5	Res Const	2	1,500	%0	20%	8:00	16:00	68.0	1,360	0	42	85	0

Ventilation run hours are based on the new proposed schedules. They are based on a 34 week school heating cycle per year.
 Weather bin data has been used to calculate deltaTxhours. The formula to determine deltaTxhours uses the proposed schedules to determine fractions of the weather bins to be used in the deltaTxhour calculation. See note 3.
 The deltaTxhours generated by the bin analysis is used in the following formula to determine MMBTUJyr. %OAXCFMX1.08XdeltaTxhours=BTU. The hours are over a years period and the result is converted to millions of

BTUs.

ENERGY EFFICIENT MOTOR & VSD SAVINGS CALCULATIONS

JOB	: NMCC	
BUILDING	: Mailman Trades	
	03/27/09	
DAIL	03/27/09	
ANI	NUAL ENERGY SAVINGS	Units Saved
M	ECHANICAL KWH Saved	(9,379)
	MECHANICAL KW Saved	(61.3)
ECM OP	ERATIONAL Savings \$\$\$	N N
MOTOR CALCULATIONS	LOCATION	Welding Dust Collector
MOTOR CALCOLATIONS	MOTOR EXISTING CONDITION	
	FOPT TYPE	Fan
	EQPT#	DC-1
	H.P.	0.00
	ACT.H.P.	?
	RATED AMPS.	?
	AMPS 1	?
	AMPS 2	?
	KW	?
	KVAR	?
	KVA PE %	
		230
	VOLTS	230
ASSUMPTIONS	0.746	
1. kW was measured for one pump and	Existing	Fan 0.00
applied to the others.	Bun Hours	5.712
Only one pump runs at a time.	Load Factor	0.84
	Motor Eff	0.92
	kWh	0.02
	KW	0.0
	Proposed	
	HP	15.0
	Run Hours	1,020
	Load Factor	0.84
	Motor Eff.	0.920
1	kWh	10,421
	KW	10.2
	Motor kWh Saved	(10421)
Monthly kw X six months = annual kw	Monthly Motor KW saved	(10.2)
	Annual kw saved	(61.3)

OIL HEATER SAVINGS CALCULATIONS

JOB:	NMCC
BUILDING:	Mailman Trades
DATE:	3/27/2009

ANNUAL ENERGY SAVINGS	Units Saved
MECHANICAL KWH Saved	(1,108)
MECHANICAL KW Saved	
GALLONS OIL SAVED WITH oil heater	833
ECM OPERATIONAL Savings \$\$\$	

Location: Boiler:	Mailman Trades Primary
Base Gallons consumed	13,854
Total gallons saved BEFORE heater	-2,815
Net base gallons	16,669
Oil heater savings=5% of net gals	5.0%
Gallons Saved	833
kWh to Heat Oil @ 70 watt/gal	1108

DOB: NMCC BUILDING: Commons and Residential Buildings DATE: 3/27/2009 BUILDING ROLL-UP

Building Square Footage = 68,894

s and	ntial	rotal			336	329	(2,025)	0	2,829	1,522	0	0	0	8,767	20	(\$253)	\$0	\$13,054	\$0	\$0	\$0	\$1,098	\$0	\$13,898		Ο\$	\$	\$0	\$0	
Commons and	Residen	Roll-Up Total																\$						\$						
	io	Heaters		z			(2,025)	0		1,522						(\$253)	\$0	\$4,567						\$4,313		C #	0 .		\$0	Y
	Ventilation			z	(66)	(66)	0	0	(852)		0	0				\$0	\$0	(\$2,556)	\$0	\$0				(\$2,556)		\$0	0.0		\$0	٨
	CO2	Controls		z	291	291	0	0	2,505		0	0				\$0	\$0	\$7,515	\$0	\$0				\$7,515		C \$	00		\$0	٨
	Night	Setback		۲	38	31			264		0	0						\$792	\$0	\$0				\$792		0\$	\$		\$0	٢
	Envelope	Sealing		z	106	106	0	0	912		0	0				\$0	\$0	\$2,736	\$0	\$0				\$2,736		¢0	0 0		\$0	٨
ECMs		Lighting		z										8,767	20							\$1,098	\$0	\$1,098				\$0	0\$	۸
	BUILDING TOTALS		ANNUAL ENERGY SAVINGS	20% Safety Factor Applied	Calculated MMBtu Saved	Gauranteed MMBtu Saved	MECHANICAL KWH Saved	MECHANICAL KW Saved	OIL GALLON Saved BEFORE oil heater	OIL GALLON Saved by oil heater	PROPANE GALLON Saved	NATURAL GAS THERMS Saved	Water & Sewer GALLONS Saved	LIGHTING KWH Saved	LIGHTING KW Saved	MECHANICAL KWH Savings \$\$\$	MECHANICAL KW Savings \$\$\$	OIL Savings \$\$\$	PROPANE Savings \$\$\$	NATURAL GAS Savings \$\$\$	WATER & SEWER Savings \$\$\$	LIGHTING KWH Savings \$\$\$	LIGHTING KW Savings \$\$\$	TOTAL ENERGY SAVINGS \$\$\$	ANNUAL OPERATIONAL SAVINGS	ECM OPERATIONAL Savings \$\$\$		LIGHTING Operational Savings \$\$\$	TOTAL OPERATIONAL SAVINGS \$\$\$	INCLUDE ECM ?

	% Dollars Saved Per Year	_	
% of Elect. \$ Saved	0.0%	\$ Elec (Baseline)	\$0
% of Oil \$ Saved	9.5%	\$ Oil (Baseline)	\$137,309
% of LP Gas \$ Saved	0.0%	\$ LP Gas (Baseline)	\$0
% of Natural Gas \$ Saved	0.0%	\$ Natural Gas (Baseline)	\$0
% of Water/Sewer \$ Saved	0.0%	\$ Water/Sewer (Baseline)	0\$
		\$ Total (Baseline)	\$137,309

	Square Foot Analysis	
	Pre Retrofit	Post Retrofit
Elec \$/Sq Ft/Yr	\$0.00	(\$0.01)
Oil \$/Sq Ft/Yr	\$1.99	\$1.80
LP Gas \$/Sq Ft/Yr	\$0.00	\$0.00
Natural Gas \$/Sq Ft/Yr	\$0.00	\$0.00
Water & Sewer \$/Sq Ft/Yr	\$0.00	\$0.00
Total Utility Cost \$/Sq Ft/Yr	\$1.99	\$1.79
Elec KW/Sq Ft/Yr	0:0000	(0.0003)
Elec KWH/Sq Ft/Yr	0:00	(0.10)
0II GALLONS/Sq FVYr	0.66	0.60
LP Gas GALLONS/Sq Ft/Yr	0.00	0.00
Natural Gas THERMS/Sq Ft/Yr	0:00	0:00
Water & Sewer GALLONS/Sq Ft/Yr	0.00	0.00

UTILITY DATA SHEET

JOB: NMCC	BUILDING: Commons and Residential Buildin	DATE: 3/27/2009
	BUILD	

Meter: Electric		LANG	1,1476	T-401 1400			-				Total
-							Aiddne .		Demano		
The campus is mair	kWh	Delivery	Supply	Charges	\$/kWh	kWh Rate	kWh Rate	κw	Charge	\$/kW	Charges
10/07/10											
08/24/07											
09/26/07											
-	ie campus	s is main meter	red only. See	Christie Complex	The campus is main metered only. See Christie Complex Utility Data for the electrical usage for the campus.	he electrical usage	ge for the campu	IS.			
12/26/07											
01/24/08											
02/22/08											
03/24/08											
04/23/08											
05/22/08											
06/23/08											
2007-8 Total											

Meter: WES Oil #2 Date HDD								
90 I.I.	Gal	Cost	\$/Gal	Date	П	Gal	Cost	\$/Gal
11 DO-IDC	10,371.00	\$22,397.95	2.16	Jul-07	70	0.00	\$0.00	\$0.00
Aug-06 159	0.00	\$0.00	0.00	Aug-07	125	6,191.90	\$13,733.10	\$2.22
Sep-06 310	2,027.00	\$3,866.72	1.91	Sep-07	297	0.00	\$0.00	\$0.00
Oct-06 670	1,600.10	\$2,892.98	1.81	Oct-07	541	1,525.00	\$3,882.19	\$2.55
Nov-06 859	6,680.40	\$12,323.07	1.84	Nov-07	1076	4,283.40	\$12,201.47	\$2.85
Dec-06 1284	3,507.20	\$7,281.09	2.08	Dec-07	1601	11,747.20	\$32,191.90	\$2.74
Jan-07 1627	7,973.90	\$16,582.58	2.08	Jan-08	1608	10,661.50	\$29,955.65	\$2.81
Feb-07 1560	6,343.80	\$13,192.58	2.08	Feb-08	1479	8,074.20	\$22,624.54	\$2.80
Mar-07 1296	7,890.90	\$16,409.91	2.08	Mar-08	1475	1,450.00	\$4,884.44	\$3.37
Apr-07 872	611.80	\$1,304.85	2.13	Apr-08	755	300.00	\$1,091.34	\$3.64
May-07 478	0.00	\$0.00	0.00	May-08	468	200.00	\$697.02	\$3.49
Jun-07 136	0.00	\$0.00	0.00	Jun-08	149	100.00	\$416.37	\$4.16
Yearly Totals 9268	47006.10	\$96,251.73	2.05	Yearly Totals	9644	44,533.2	\$121,678.02	\$2.73
2006-07 Total Gallons	47,006			2007-08 Total Gallons		44,533		
2004-06 Average Tc 9,456	45,770	\$43,586	\$0.95					
2007-08 Lock-In r	\$3.00	\$3.00 / Gallon						

Residential Fuel Sheet

FUEL SHEET								Heating Fuel		Kitche	Kitchen Fuel
Insert data in pink cells	ink cells only!						Fuel Oil	Gas	Propane	Gas	Propane
JOB	JOB: NMCC						۲	z	c	c	٨
BUILDING	BUILDING: Commons and Residential Buildings	Residential E	suildings		Heating Fuel Adjustment	djustment					AVERAGE
DATE	DATE: 3/27/2009				BASE YR		AVE YEAR		BASE YR		EXPECTED
Base Yr	Base Yr: 07/06 to 06/08				DEG DAYS		DEG DAYS		GALLONS		GALLONS
	(Month/Year to	'ear to Month/Year)	r)		9,456		9659		45,770		46,734
		FUEL INFORMATION BASE VR	IATION								
	SQUARE	BOILER	ТҮРЕ	BASE YR	BASE YR	\$	BTU/	\$/PER			
	FEET	EFFIC	FUEL	GAL	COST	GAL	UNIT	mmBTU			
Adj Base Line	68,894	0.83	2	45,770	\$137,309	\$3.00	140,000	\$25.82			
Adjustment		0.83	7	45,770	\$93,723	\$2.05	140,000	\$17.62			
Base Year		0.83	2	45,770	\$43,586	\$0.95	140,000	\$8.20			
		ELECTRIC INFORMATION	ORMATION								
		Annual	Annual	Cost/	BTU/	\$/PER	Annual	Annual	Cost/	SUNDRY	TOTAL
	POWER	KWH Used	KWH Cost	KWH	UNIT	mmBTU	Demand	KW Cost	kW	CHARGES	ELEC Cost
	METER-#	(KWH)	(\$)	(\$)	(BTU)	(\$)	(KW)	(\$)	(\$)	(\$)	(\$)
Adj Base Line	0	0	\$0	\$0.1252	3,413	\$36.68	0	\$0	\$0.00	\$0	۔ ج
Adjustment		0	\$0	\$0.1252	3,413	\$36.68	0	\$0	\$0.00	\$0.00	\$0.00
Base Year	Total	0	\$0	\$0.000	3,413	\$0.00	0	\$0	\$0.00	\$0	۔ \$
	Off Peak	0	\$0	\$0.00	3,413	\$0.00	0	\$0	\$0.00	\$0.00	
	Outside Lights	0	\$0	\$0.00	3,413	\$0.00	0	\$0	\$0.00	\$0.00	
	Main	0	\$ 0	\$0.00	3 413	\$0 00	c	¢0	\$0.00	¢0	

Energy Energy Energy Mines Units BTUS mmBTUS Electricity kwh kWh 3.413 0.003413 0.003413 Natural Gas Therm therm 100,000 0.1 0.03413 Natural Gas Therm Therm 100,000 0.13 0.003413 Natural Gas Therm Therm 103,000 0.13 0.13 Retural Gas MCF MCF 103,000 0.14 0.14 Energy Abrev. Units BTUS mmBTUS 0.1456 #4 Fuel 2 GAL 145,000 0.1456 0.1456 #5 Fuel 2 GAL 145,000 0.1456		mmBTU Conversion	ersion		
Abrev. Units BTUs BTUs kwh kWh 3.413 1.00.00 kwh KWh 3.413 1.00.000 CCF 100.000 1.00.000 1.03.000 MCF MCF 1.03.000 1.03.000 Abrev. Units BTUs 1.03.000 2 GAL 1.40.600 1.40.600 4 GAL 134.5600 1.05.600 6 GAL 135.600 1.00.000 6 GAL 135.600 1.00.000 6 GAL 1.15.600 1.15.600 6 THERM 1.00.000 1.15.600 7 Sim LBS 1.15.600		Energy			
kwh kWh 3.413 Therm Therm 3.413 Therm Therm 100,000 CCF CCF 1.03,000 MCF MCF 1,030,000 Abrev. Units BTUs 2 GAL 140,000 6 GAL 153,600 6 GAL 150,000 7 1650,000 1,150 8 1,150,000 1,150	Energy	Abrev.	Units	BTUs	mmBTUs
Therm Therm 100,000 CCF CCF 1,030,000 MCF MCF 1,030,000 Abrev. Units BTUs 2 GAL 143,000 6 CAL 1535600 6 GAL 1535600 6 GAL 1535600 6 GAL 1535600 6 GAL 160,000 6as THERM 100,000 Prop GAL 1,150 Sim LBS 1,150,000	Electricity	ЧмЯ	kWh	3,413	0.003413
CCF CCF 103,000 RD MCF 103,000 RD MCF 103,000 RD Abrev. Units BTus Abrev. Units BTus 140,000 4 GAL 145,600 165,600 6 GAL 153,600 165,600 6 GAL 100,000 200,000 6 GAL 100,000 200,000 7 Gas THERM 100,000 7 Final 1,155,000 200,000 7 Final 1,155,000 200,000	Natural Gas	Therm	Therm	100,000	0.1
MCF MCF 1,030,000 RDs BTUs BTUs 2 GAL 145,600 4 GAL 145,600 6 GAL 153,600 7 Coal TON 24,000,000 6 GAL 153,600 100,000 6 GAL 170,000 100,000 6 Prop GAL 11,150 8 Prop LBS 1,150 8 NLBS 1,150		CCF	CCF	103,000	0.103
Igy Abrev. Units BTUs 2 GAL 140.000 2 GAL 153.600 6 GAL 170.000 6 GAL 170.000 6 GAL 170.000 7 Prop GAL 100.000 MLBS 1,150 8 Prop KLBS 1,150		MCF	MCF	1,030,000	1.03
2 GAL 140,000 4 GAL 145,600 6 GAL 153,600 6 GAL 153,600 7 Coal TON 24,000,000 8 Gas THERM 100,000 9 Prop GAL 1,150,000 8 Prop LBS 1,150,000 8 LBS 1,150,000	Energy	Abrev.	Units	BTUs	mmBTUs
4 GAL 145,600 6 GAL 153,600 00al TON 24,000,000 5 Gas THERM 100,000 6 Prop GAL 31,000 6 NB 1,150 1,150 6 KLBS 1,150 1,150	#2 Fuel	2	GAL	140,000	0.14
I 6 GAL 153,600 Coal TON 24,000,000 cs THERM 100,000 re Prop GAL 31,000 R Prop GAL 11,000 R Prop LBS 1,150 kLBS 1,150,000 1,150,000	#4 Fuel	4	GAL	145,600	0.1456
Coal TON 24,000,000 is Gas THERM 100,000 ie Prop GAL 91,000 im LBS 1,150 1 kLBS 1,160 1 1	#6 Fuel	9	GAL	153,600	0.1536
Gas THERM 100,000 Prop GAL 91,000 Rtm LBS 1,150 kLBS 1,150,000	Coal	Coal	TON	24,000,000	24
Image Prop GAL 91,000 Stm LBS 1,150 1 kLBS 1,150,000 1 1	Nat Gas	Gas	THERM	100,000	0.1
Stm LBS 1,150 kLBS 1,150,000	Propane	Prop	GAL	91,000	0.091
1,150,000	Steam	Stm	LBS	1,150	0.00115
			KLBS	1,150,000	1.15

\$/PER mmBTU \$0.00

BTU/ UNIT 91,000

COST/ GALLON \$1.57 \$0.00 \$0.00

PROPANE INFORMATION PROPANE PROPANE GALLONS COST 0 \$0 0 \$0 0 \$0

> Boiler Effic 0.85 0.85 0.85

> > Adj Base Line Adjustment Base Year

\$0.00

91,000

\$/PER mmBTU \$0.00

BTU/ UNIT 100,000 100,000 100,000

N/GAS \$/THRM \$0.00 \$0.00 \$0.00

NGAS COST \$0 \$0 \$0

N/GAS INFORMATION Boiler N/GAS Effic THERMS 0.85 0 0.85 0 0.85 0

Adj Base Line Adjustment Base Year

\$0.00

	High	Том	Average
#2 Fuel	141800	137000	
#4 Fuel	148100	143100	145600
#6 Fuel	155900	151300	

NMCC Exhibit G1 03-09-09 3/27/2009 1:59 PM

Page 36

LIGHTING SUMMARY

JOB:	NMCC
BUILDING:	Commons and Residential Buildings
DATE:	3/27/2009

ANNUAL ENERGY SAVINGS Units Saved

LIGHTING KWH Saved ANNUAL LIGHTING KW Saved	8,767 19.9	
LIGHTING OPERATIONAL Savings \$\$\$	\$0	

	Building Totals	
Information provided by	Lighting Base kW/Month	4.2
lighting subcontractor	Lighting Base kWh/Year	17,137
	Lighting kW Saved/Month	2.2
	Months/Year kw Saved	9.0
	Lighting kW Saved/YEAR	19.9
Calculated by lighting vender	Lighting kWh Saved/Year	9,742
	Reduction of run hours %	10%
Calculated by us	Lighting kWh Saved/Year	8,767

Sealing, Weatherstripping, Caulking, Windows & Doors

JOB:	NMCC
BUILDING:	Commons and Residential Buildings
DATE:	3/27/2009

ANNUAL ENERGY SAVINGS	Units Saved
MECHANICAL KWH Saved	
MECHANICAL KW Saved	
MMBtu Saved BEFORE oil heater	106
ECM OPERATIONAL Savings \$\$\$	

Infiltration

% CFM Used	75%
Existing CFM	564
MMBtu Savings	106

Insulation

Area	0
Existing 'U' Value	0.2
Proposed 'U' Value	0.0264
Difference	0.1736
Annual Degree Days	7,327
MMBtu Savings	0

Vork to be completed	No. of Units	Perimeter (ft)	Crackage (in)	Conversio n to feet		Product
xit Doors	33	20	1/16	1/12	=	3.4375
RTV's	0	0	1/6	1/12	=	0
Roof/ Wall Joint	1	354	1/8	1/12	=	3.6875
DH Door	-	0	1/6	1/12	=	0
Sweeps only (Doors)	-	0	1/16	1/12	1	0
				Т	fotal =	7.125
nfiltration Saving:				<u>1</u>	otal =	7.125
nfiltration Saving: Total Crack	Average	Average	Windward	Infiltration	otal =	7.125
	Average Wind Speed	Average Wind Speed	Windward Diversity		otal =	7.125
Total Crack				Infiltration	otal =	7.125
Total Crack Area	Wind Speed	Wind Speed	Diversity	Infiltration Savings	otal =	7.125

NIGHT SETBACK SAVINGS CALCULATIONS

JOB:	JOB: NMCC
BUILDING:	Commons and Residential Buildi
DATE: 3/	3/27/2009

Units Saved	0	0	38
ANNUAL ENERGY SAVINGS	MECHANICAL KWH Saved	MECHANICAL KW Saved	MMBtu Saved BEFORE oil heater

\$0.00 ECM OPERATIONAL Savings \$\$\$

	e			يع												
Gas or	Propane			r MMBtu/Yr	•		0	0		0	0	0	0	0	0	0
	oil		, p	MMBtu/Yr	38		0	39		£	0	0	0	0	0	0
	Savings		or MMBtu/Yr/u	nit			0	39		£	0	0	0	0	0	0
	Fuel		(0 or	6			0	0		0	0	0	0	0	0	0
	Proposed		Occupied	End			23:59	21:00		12:30	12:30	23:59	23:59	23:59	23:59	23:59
	Pro		Occupied	Begin			0:01	10:00		12:00	12:00	0:01	0:01	0:01	0:01	0:01
	Existing		Occupied	End			23:59	21:00		12:01	12:01	23:59	23:59	23:59	23:59	23:59
	Exi		Occupied	Begin			0:01	3:00		12:00	12:00	0:01	0:01	0:01	0:01	0:01
	Proposed		Unoccupied	Temperature			55	60		60	60	55	55	55	55	55
	Prop		Occupied	Temperature			20	20		72	65	68	68	68	68	88
	ting		Unoccupied	Temperature			55	60		60	60	55	55	55	55	55
zone ocnedule	Existing		Occupied	Temperature			20	70		72	65	68	68	68	68	89
J			Coefficient of Heat	Transfer, Roof	0.04-0.20		0.12	0.12		0.12	0.12	0.12	0.12	0.12	0.12	0.20
		Below	Heated	Space			z	z		z	≻	z	z	z	z	z
		Coefficient of Heat	Transfer,	Windows	0.25-0.50		0.35	0.35		0.35	0.35	0.35	0.35	0.35	0.35	0.35
				%, Windows			%0	50%		35%	15%	30%	30%	30%	30%	30%
			Coefficient of Heat	Transfer, Wall	0.10-0.30		0.20	0.20		0.20	0.20	0.20	0.20	0.20	0.20	0.20
			0	Area Floor/Roof Area Transfer, Wall			3,500	9,000		2,500	1,000	9,000	9,000	9,000	13,000	000'6
			Wall	Area F			0	2,300		1,200	006	5,500	6,000	9,500	7,000	8,000
				aty.			-	-		-	-	-	-	-	-	÷
				Unit Designation Zone / Area Served		Andrews Common	Areas	Commons Dining	Commons	Conference	Snow Conference	Andrews Hall	Aroostook Hall	Penobscot Hall	Snow Hall	Washington Hall
				Unit Designation			HV-1	HV-2		UV-1	UV-2	ET-1	FT-2	FT-3	FT-4	FT-5

Nets: 2. Conficients of Heat Transfer are estimated by age, condition and construction of the building. 3. Weather bin data has been used to estudied estimation of the building. 4. Areas of floors, wells, windows and roots are estimated from davings and proposed schedules to determine fractions of the weather bins to be used in the detaTrahour calculation. See note 3. 5. The detaTrahours generated by the bin analysis to used in the projectional to determine MIBTULY. U.Coefficient of Heat Transferzviewadeha Trahours-BTU. The hours are over a years period and the reach is converted to millions of BTUs.

New Ventilation Energy Cost

JOB: NMCC BUILDING: Commons and Residential E DATE: 3/27/2009

Units Saved	0	0	(66)
ANNUAL ENERGY SAVINGS Units Saved	MECHANICAL KWH Saved	MECHANICAL KW Saved	MMBtu Saved BEFORE oil heater
			-

ECM OPERATIONAL Savings \$\$\$

\$0.00

									Equipment Schedule	Schedule										
																		Gas or		
			Fan		Fan	Existing		A/C	A/C			Proposed		Proposed	Fuel		ō	Propane		КWH
				HP/		CFM	CFM (Y or Nor		% Eff.	Occupied	Occupied	Occupied		ž	MBtu/Yr/		2	Jsage/ Us	sage/Y
Unit Designation	n Zone / Area Served	oty.	Qty. (N or E)	Unit	kW Reading	OA/Unit		ш	Peak kW	ERVs	Begin	End	Temp	Hrs/Yr ((O or P)	unit M	MMBtu/Yr N	MMBtu/Yr		-
																				•
HV-1	Andrews Common Areas	0	ш	3.00	1.16	300	006	z	0.00	%0	0:01	23:59	70.0	4,074	0	194	0	0	0	0
HV-2	Commons Dining	~	ш	3.00	1.63	500	1,500	z	0.00	%0	10:00	21:00	70.0	1,870	0	94	94	0	0	0
UV-1	Commons Conference	~	ш	0.25	0.15	150	450	z	0.00	%0	12:00	12:30	72.0	85	0	e	e	0	0	0
UV-2	Snow Conference	-	ш	0.25	0.15	50	300	z	0.00	%0	12:00	12:30	65.0	85	0	2	2	0	0	0
HRU-1	Andrews Hall	~	ш	0.00	0.00	450	006	z	0.00	50%	0:01	23:59	68.0	4,074	0	0	0	0	0	0
HRU-2	Aroostook Hall	-	ш	0.00	0.00	450	006	z	0.00	50%	0:01	23:59	68.0	4,074	0	0	0	0	0	0
HRU-3	Penobscot Hall	-	ш	0.00	0.00	450	006	z	0.00	50%	0:01	23:59	68.0	4,074	0	0	0	0	0	0
HRU-4	Snow Hall	-	ш	0.00	0.00	650	1,300	z	0.00	50%	0:01	23:59	68.0	4,074	0	0	0	0	0	0
HRU-5	Washington Hall	-	ш	0.00	0.00	450	006	z	0.00	50%	0:01	23:59	68.0	4,074	0	0	0	0	0	0

They are based on a 34 week school heating cycle per year run hours are based on the

o determine deltaTxhours uses the existing and proposed schedules to determine fractions of the weather bins to be used in the deltaTxhour calculation. See note 3. rmulat to determine MMBTU/yr. CFMX1.08xdeltaTxhours=BTU. The hours are over a years period and the result is converted to millions of BTUs. A delta is calculated between existing and proposed I in the following for vd be

calendar days during the school year, inclusive of holidays. 193 M-F

5. If the equipment is existing and the fan's greater than 3Hp, KW readings are instantaneous during site visit and are assumed to be representative of the systems operation including post project implementation. If the equipment is existing and the fan is less than 3Hp, KW readings are calculated based on an assumed 70% loading and 85% efficiency.

VENTILATION CONTROLS

JOB: NMCC			
BUILDING: Commons and Residential Buildings	ential Buildings		8
DATE: 3/27/2009			1
	ľ		
ANNUAL ENERGY SAVINGS Units Saved	Units Saved	% Run Hour	% Run Hours % Outside Air
MECHANICAL KWH Saved	0	40%	100%
MECHANICAL KW Saved	0	20%	75%
MMBtu Saved BEFORE oil heater	291	20%	50%
		20%	25%
ECM OPERATIONAL Savings \$\$\$	\$0.00	70.0%	Weighted averac

Weighted average % Ventilation

						Equipment Schedule	Schedule						
					Weighted Average		Proposed		Proposed	Fuel		lio	Gas or Propane
Unit Designation	Zone / Area Served	Qtv.	CFM OA/Unit	% Eff. ERVs	Percent CFM OA	Occupied Beain	Occupied End	Occupied Temp	Hrs/Yr	(O or P)	MMBtu/Yr	MMBtu/Yr	MMBtu/Yr
		ł				- 		<u>-</u> - - -				291	0
HV-1	Andrews Common Areas	0	006	%0	20%	0:01	23:59	70.0	4,074	0	87	0	0
HV-2	Commons Dining	-	1,500	%0	70%	10:00	21:00	70.0	1,870	0	64	64	0
UV-1	Commons Conference	-	450	%0	20%	12:00	12:30	72.0	85	0	~	-	0
UV-2	Snow Conference	-	300	%0	20%	12:00	12:30	65.0	85	0	0	0	0
HRU-1	Andrews Hall	-	006	50%	20%	0:01	23:59	68.0	4,074	0	41	41	0
HRU-2	Aroostook Hall	-	006	50%	20%	0:01	23:59	68.0	4,074	0	41	41	0
HRU-3	Penobscot Hall	-	006	50%	20%	0:01	23:59	68.0	4,074	0	41	41	0
HRU-4	Snow Hall	-	1,300	50%	20%	0:01	23:59	68.0	4,074	0	60	60	0
HRU-5	Washington Hall	-	006	50%	%02	0:01	23:59	68.0	4,074	0	41	41	0
Notes:													

1. Ventilation run hours are based on the new proposed schedules. They are based on a 34 week school heating cycle per year.

2. Weather bin data has been used to calculate deltaTxhours. The formula to determine deltaTxhours uses the proposed schedules to determine fractions of the weather bins to be used in the deltaTxhour calculation. See note 3.

3. The deltaTxhours generated by the bin analysis is used in the following formula to determine MMBTU/yr. %OAxCFMx1.08xdeltaTxhours=BTU. The hours are over a years period and the result is converted to millions of BTUs.

OIL HEATER SAVINGS CALCULATIONS

JOB:	NMCC
BUILDING:	Commons and Residential Buildings
DATE:	3/27/2009

ANNUAL ENERGY SAVINGS	Units Saved
MECHANICAL KWH Saved	(2,025)
MECHANICAL KW Saved	
GALLONS OIL SAVED WITH oil heater	1,522
ECM OPERATIONAL Savings \$\$\$	

Location:	Commons and Residential Buildings
Boiler:	Primary
Base Gallons consumed	33,273
Total gallons saved BEFORE heater	2,829
Net base gallons	30,444
Oil heater savings=5% of net gals	5.0%
Gallons Saved	1,522
kWh to Heat Oil @ 70 watt/gal	2025

0	
5	
Ξ.	
0	
õ	
S	
×.	
Ĕ	
5	

	ш
	1
	2
-	
•	
=	
_	
- 1	
_	
_	
0	
U	
R	
()	
ž	
~	
=	
0	
_	
=	
_	
m	
-	

JOB: NMCC	BUILDING: Shops	DATE: 3/27/2009	

Building Square Footage = 1

Oil Shops Heaters Roll-Up Total		55 49	(3,996) (4)	425 372	00	0	0	_	(\$50(\$0	\$2,388	ŵ	÷,	÷	0\$	\$1,888		\$	Ś	Ś	I
Oil Heaters																					
	z		(494) 0	372					(\$62)	\$0	\$1,115					\$1,053		\$0		\$0	
Motors Drives	z		(3,502) (4)						(\$438)	\$0						(\$438)		\$0		\$0	
Ventilation	z	(61) (61)	00	(522)	00	ľ			\$0		(\$1,567)	\$0	\$0			(\$1,567)		\$0		20	
CO2 Controls	z	50	00	426	00	ľ			20	\$0	\$1,278	\$0	\$0			\$1,278		\$0		0\$	
Night Setback	۲	27 22		188	00						\$565	\$0	\$0			\$565		\$0		\$0	
Envelope Sealing	z	39 39	00	332	00	ľ			\$0	\$0	266\$	\$0	\$0			266\$		\$0		0\$	
ECMs Lighting	z						0	0							0\$ \$0	\$0			\$0	0\$	
BUILDING TOTALS	ANNUAL ENERGY SAVINGS 20% Safety Factor Applied	OUTPUT Calculated MMBtu Saved Gauranteed MMBtu Saved	MECHANICAL KWH Saved MECHANICAL KW Saved	OIL GALLON Saved BEFORE oil heater OIL GALLON Saved bv oil heater	PROPANE GALLÓN Saved NATHRAI GAS THFRMS Saved	Water & Sewer GALLONS Saved	LIGHTING KWH Saved	LIGHTING KW Saved	MECHANICAL KWH Savings \$\$\$	MECHANICAL KW Savings \$\$\$	OIL Savings \$\$\$	PROPANE Savings \$\$\$	NATURAL GAS Savings \$\$\$	WATER & SEWER Savings \$\$\$	LIGHTING KWH Savings \$\$\$ LIGHTING KW Savings \$\$\$	TOTAL ENERGY SAVINGS \$\$\$	ANNUAL OPERATIONAL SAVINGS	ECM OPERATIONAL Savings \$\$\$	LIGHTING Operational Savings \$\$\$	TOTAL OPERATIONAL SAVINGS \$\$\$	

% of Elect. \$ Saved	0.0%	\$ Elec (Baseline)	\$0
% of Oil \$ Saved	10.1%	\$ Oil (Baseline)	\$23,572
% of LP Gas \$ Saved	0:0%	\$ LP Gas (Baseline)	\$0
% of Natural Gas \$ Saved	0.0%	\$ Natural Gas (Baseline)	\$0
% of Water/Sewer \$ Saved	0.0%	\$ Water/Sever (Baseline)	\$0
		\$ Total (Baseline)	\$23,572

0% of Eloct I// Covod	10///10#	Eloc K/M (Bocolino)	0
/0 OI EIGOL LAV CAVED	:0/A I/7#		>
% of Elect. KWH Saved	i0//\IC#	Elec KWH (Baseline)	0
% of Oil GALLONS Saved	10.1%	Oil GALLONS (Baseline)	7,857
% of L.P. Gas GALLONS Saved	0:0%	L.P. Gas GALLONS (Baseline)	0
% of Natural Gas THERMS Saved	0.0%	Natural Gas THERMS (Baseline)	0
% of Water & Sewer GALLONS Saved	0.0%	Water & Sewer GALLONS (Baseline)	0

	Square Foot Analysis	
	Pre Retrofit	Post Retrofit
Elec \$/Sq Ft/Yr	\$0.00	\$0.03
Oil \$/Sq Ft/Yr	\$1.55	\$1.39
LP Gas \$/Sq Ft/Yr	\$0.00	\$0.00
Natural Gas \$/Sq Ft/Yr	\$0.00	\$0.00
Water & Sewer \$/Sq Ft/Yr	\$0.00	\$0.00
Total Utility Cost \$/Sq Ft/Yr	\$1.55	\$1.42
Elec KW/Sq Ft/Yr	0.0000	0.0003
Elec KWH/Sq Ft/Yr	0:00	0.26
Oil GALLONS/Sq Ft/Yr	0.52	0.46
LP Gas GALLONS/Sq Ft/Yr	0:00	0.00
Natural Gas THERMS/Sq Ft/Yr	0:00	0.00
Water & Sewer GALLONS/So Ft/Yr	0.00	0:00

UTILITY DATA SHEET

Г

JOB:	NMCC
BUILDING:	Shops
DATE:	3/27/2009

		kWh	kWh	Total kWh		Delivery	Supply		Demand		Total
he campus is	kWh	Delivery	Supply	Charges	\$/kWh	kWh Rate	kWh Rate	kW	Charge	\$/kW	Charges
07/25/07											
08/24/07											
09/26/07											
10/24/07	The campus	is main metere	d only. See C	hristie Complex	Utility Data fo	r the electrical u	sage for the cam	pus.			
11/27/07											
12/26/07											
01/24/08											
02/22/08											
03/24/08											
04/23/08											
05/22/08											
06/23/08											
00/23/00											

Date	HDD	Gal	Cost	\$/Gal	Date	HDD	Gal	Cost	\$/Gal
Jul-06	17	800.00	\$1,732.56	2.17	Jul-07	70	0.00	\$0.00	\$0.00
Aug-06	159	0.00	\$0.00	0.00	Aug-07	125	0.00	\$0.00	\$0.00
Sep-06	310	168.60	\$321.62	1.91	Sep-07	297	0.00	\$0.00	\$0.00
Oct-06	670	200.20	\$361.96	1.81	Oct-07	541	203.00	\$501.09	\$2.47
Nov-06	859	1,135.70	\$2,083.71	1.83	Nov-07	1076	1,942.30	\$5,437.27	\$2.80
Dec-06	1284	959.80	\$1,996.00	2.08	Dec-07	1601	768.50	\$2,175.03	\$2.83
Jan-07	1627	1,758.40	\$3,656.76	2.08	Jan-08	1608	1,027.50	\$2,922.32	\$2.84
Feb-07	1560	1,627.30	\$3,384.13	2.08	Feb-08	1479	2,426.80	\$6,777.98	\$2.79
Mar-07	1296	1,269.90	\$2,640.89	2.08	Mar-08	1475	786.70	\$2,610.59	\$3.32
Apr-07	872	539.50	\$1,150.65	2.13	Apr-08	755	0.00	\$0.00	\$0.00
May-07	478	0.00	\$0.00	0.00	May-08	468	100.30	\$349.56	\$3.49
Jun-07	136	0.00	\$0.00	0.00	Jun-08	149	0.00	\$0.00	\$0.00
early Totals	9268	8,459.4	\$17,328.28	\$2.05	Yearly Totals	9644	7,255.1	\$20,773.84	\$2.86
2004-05 Total Ga	llons	8,459			2005-06 Total Gallon	s	7,255		
2004-06 Avera	9,456	7,857	\$19,051	\$2.42					
2007-08 L	ock-lr	\$3.00	/ Gallon						

H	1
ш	
뿌	
R	-1-1-
_	
Щ	1000
E	ŝ

Insert data in pink cells only!	k cells only!	
JOB:	JOB: NMCC	
BUILDING: Shops	Shops	Heating Fuel Adjustment
DATE:	DATE: 3/27/2009	BASE YR
Base Yr:	Base Yr: 07/06 to 06/08	DEG DAYS
	(Month/Year to Month/Year)	9,456

AVERAGE EXPECTED GALLONS 8,023

BASE YR GALLONS 7,857

AVE YEAR DEG DAYS

Gas Propane z

Propane ۲Z,

Fuel Oil

Heating Fuel Gas z

z

Kitchen Fuel

		FUEL INFORM	IATION					
		BASE YR						
	SQUARE	BOILER	ТҮРЕ	BASE YR	BASE YR	\$	BTU/	\$/PER
	FEET	EFFIC	FUEL	GAL	COST	GAL	UNIT	mmBTU
Adj Base Line	15,242	0.83	2	7,857	\$23,572	\$3.00	140,000	\$25.82
Adjustment		0.83	2	7,857	\$4,521	\$0.58	140,000	\$4.95
Base Year		0.83	2	7,857	\$19,051	\$2.42	140,000	\$20.87

rate of \$2.23/Gallon	
Note: Adjustment is to achieve current 2007 lock-in rate of \$2.23/Gallor	
Note: Adjustment	

	Annual	Annual	Cost/	BTU/	\$/PER	Annual	Annual	Cost	SUNDRY	TOTAL
POWER	KWH Used	KWH Cost	KWH	UNIT	mmBTU	Demand	KW Cost	κw	CHARGES	ELEC Cost
METER-#	(KWH)	(\$)	(\$)	(BTU)	(\$)	(KW)	(\$)	(\$)	(\$)	(\$)
0	0	\$0	\$0.1252	3,413	\$36.68	0	\$0	\$0.00	\$0	- \$
	0	\$0	\$0.1252	3,413	\$36.68	0	\$0	\$0.00	\$0.00	\$0.00
Total	0	\$0	\$0.000	3,413	\$0.00	0	\$0	\$0.00	\$0	s ۔
Off Peak	•	\$0	\$0.00	3,413	\$0.00	0	\$0	\$0.00	\$0.00	
Outside Lights	•	\$0	\$0.00	3,413	\$0.00	0	\$0	\$0.00	\$0.00	
Main	0	\$0	\$0.00	3,413	\$0.00	0	\$0	\$0.00	\$0	
Note: Adjustment	t is to achieve c	urrent 10-01-08	rate							

Adj Base Line Adjustment Base Year

	\$/PER	mmBTU	\$0.00		\$0.00
	BTU/	UNIT	100,000	100,000	100,000
	N/GAS	\$/THRM	\$0.00	\$0.00	\$0.00
	N/GAS	COST	\$0	\$0	\$0
MATION	N/GAS	THERMS	0	0	0
N/GAS INFOR	Boiler	Effic	0.85	0.85	0.85
			Adj Base Line	Adjustment	Base Year

		PROPANE IN	NFORMATION			
	Boiler	PROPANE	PROPANE	COST/	BTU/	\$/PER
	Effic	GALLONS	COST	GALLON	UNIT	mmBTU
j Base Line	0.85	0	\$0	\$1.57	91,000	\$0.00
justment	0.85	0	\$0	\$0.00		
se Year	0.85	•	\$0	\$0.00	91.000	\$0.00

BTUS B113 3.413 3.413 3.413 3.413 3.413 100,000 1030,000 145,600 145,600 24,000 91,000 1,150 1,150		mmBTU Conversion	ersion		
rgy Abrev. Units BTUs city kwh kVh 3,413 city kwh therm 100,000 CSF Therm 100,000 MCF MCF 103,000 MCF NCF 103,000 PMOR CSF 103,000 PMOR MCF 140,000 I 2 GAL 145,600 I 2 GAL 145,600 I 4 GAL 145,600 I 6 GAL 145,600 I 6 GAL 145,600 I 6 GAL 100,000 I 6 GAL 91,000 I FIN 100,000 1,153,600 I FIN BAN 91,000 I FIN 1,150,000 1,150,000		Energy			
city kwh kWh 3,413 I Gas Therm Therm 100,000 I Gas Therm 100,000 MCF NCF 103,000 MCF MCF 103,000 I MCF NCF 103,000 I MCF MCF 140,000 I 2 GAL 140,000 I 6 GAL 145,600 I 6 GAL 145,600 I 6 GAL 145,600 I 6 GAL 145,600 I 6 GAL 153,600 I 6 GAL 153,600 I 6 GAL 153,600 I 6 GAL 91,000 I FIS 14,600 14,600	Energy	Abrev.	Units	BTUs	mmBTUs
I Gas Therm Therm 100,000 CCF CCF 103,000 MCF MCF 1,030,000 Figy Abrev. Units BTUs 1 I 2 GAL 140,000 1 I 2 GAL 145,600 1 I 6 GAL 145,600 1 I 6 GAL 145,600 1 I 6 GAL 140,000 1 I 6 GAL 140,000 1 I 100,000 1 24,000,000 1 I FIR 100,000 1 1 1 I FIR 100,000 1 1 1 1 I FIR HS 1 <th>Electricity</th> <th>kwh</th> <th>ЧМА</th> <th>3,413</th> <th>0.003413</th>	Electricity	kwh	ЧМА	3,413	0.003413
CCF CCF 103,000 rigy MCF MCF 1,030,000 rigy Abrev. Units BTus 1,030,000 I 2 GAL 145,600 1,030,000 I 4 GAL 145,600 1,000,000 I 6 GAL 145,600 1,000 I 6 GAL 145,600 1,000 I 6 GAL 145,600 1,000 I 6 GAL 190,000 1,000 I 6 GAL 1,153,00 1,150 I 100 100 100,000 1,150 I FIS 1,150 1,150 1,150	Natural Gas	Therm	Therm	100,000	0.1
MCF MCF 1,030,000 Progy Abrev. Units BTUs 1 1 2 GAL 140,000 1 2 GAL 145,600 145,600 1 1 4 GAL 145,600 1 1 6 GAL 145,600 1 1 6 GAL 145,600 1 1 6 GAL 145,600 100,000 1 6 GAL 100,000 100,000 1 FIERM 100,000 10 100,000 1 FIS 11,160 1,150 1,150		CCF	CCF	103,000	0.103
Progy Abrev. Units BTUs I 1 2 GAL 140.000 145.600 1 4 GAL 153.600 165.600 1 6 GAL 153.600 165.600 1 6 GAL 153.600 165.600 1 6 GAL 100.000 165.600 1 6 GAL 100.000 100.000 1 FRM 100.000 145.600 145.600		MCF	MCF	1,030,000	1.03
1 2 GAL 1 4 GAL 6 GAL GAL 7 6 GAL 6 6 GAL 7 6 GAL 8 Gas THERM 8 Frop GAL 8 Frop GAL 8 Sim LBS 8 Sim LBS	Energy	Abrev.	Units	BTUs	mmBTUs
I 4 GAL I 6 GAL Cost THERM is Gas THERM Sim Prop GAL N Labor GAL	#2 Fuel	2	GAL	140,000	0.14
I 6 GAL Coal TON S Gas THERM Prop CAL CAL N Coal TON S Gas THERM N Prop GAL N N S	#4 Fuel	4	GAL	145,600	0.1456
Coal TON S Gas THERM Prop GAL Stm LBS	#6 Fuel	9	GAL	153,600	0.1536
is Gas THERM ie Prop GAL Stm LBS ki RS	Coal	Coal	TON	24,000,000	24
Rep Prop GAL CH	Nat Gas	Gas	THERM	100,000	0.1
Stm LBS kI BS	Propane	Prop	GAL	91,000	0.091
-	Steam	Stm	LBS	1,150	0.00115
			klbs	1,150,000	1.15

	High	том	Average
#2 Fuel	141800	137000	139400
#4 Fuel	148100	143100	145600
#6 Fuel	155900	151300	153600

Sealing, Weatherstripping, Caulking, Windows & Doors

JOB:	NMCC
BUILDING:	Shops
DATE:	3/27/2009

ANNUAL ENERGY SAVINGS	Units Saved
MECHANICAL KWH Saved	
MECHANICAL KW Saved	
MMBtu Saved BEFORE oil heater	39
ECM OPERATIONAL Savings \$\$\$	

Infiltration

% CFM Used	75%
Existing CFM	206
MMBtu Savings	39

Insulation

Area	0
Existing 'U' Value	0.2
Proposed 'U' Value	0.0264
Difference	0.1736
Annual Degree Days	7,327
MMBtu Savings	0

Work to be completed	No. of Units	Perimeter (ft)	Crackage (in)	Conversio n to feet		Product
Exit Doors	14	20	1/16	1/12	=	1.458333
RTV's	0	0	1/6	1/12	=	0
Roof/ Wall Joint		0	1/8	1/12	=	0
OH Door	4	82	1/6	1/12	=	1.138889
Sweeps only (Doors)	-	0	1/16	1/12	=	0
					Total =	2.597222

Total Crack	Average	Average	Windward	Infiltration
Area	Wind Speed	Wind Speed	Diversity	Savings
(SF)	(MPH)	(FPM)	(%)	(CFM)
٨	В	C =	D	E =
A	В	B x 5280 / 60	D	AxCxD
2.60	1.8	158.4	50%	205.700
2.00	1.0	150.4	5078	203.700

NIGHT SETBACK SAVINGS CALCULATIONS

JOB:	JOB: NMCC
BUILDING: Shops	Shops
DATE:	DATE: 3/27/2009
	ANNUAL ENERGY SAVINGS Units Saved

Units saved	0	0	27	\$0.00
ANNUAL ENERGY SAVINGS	MECHANICAL KWH Saved	MECHANICAL KW Saved	MMBtu Saved BEFORE oil heater	ECM OPERATIONAL Savings \$\$

Gas or Propane	MMBtu/Yr 0	000
Oil	MMBtu/Yr 27	0 27 0
Savings	MMBtu/Yr/u nit	0 27 0
Fuel	(0 or	000
roposed	Occupied End	16:00 16:00 16:00
Prop	Occupied Begin	6:00 6:00 6:00
Existing	Occupied End	16:00 16:00 16:00
Exi	ō	6:00 6:00 6:00
roposed	Unoccupied Temperature	52 60 60
Pro	Occupied Temperature	68 70 61
Existing	Unoccupied Temperature	52 65 60
Exis	Occupied Temperature	68 70 61
	Coefficient of Heat Transfer, Roof 0.04-0.20	0.10 0.10 0.10
Below	Heated Space	zzz
	Coefficient of Heat Transfer, Windows 0.25-0.50	0.35 0.35 0.35
	%, Windows	5% 30% 0%
	Floor/Roof Coefficient of Heat Wall Area Area Transfer, Wall 0.10-0.30	0.20 0.20 0.20
	Floor/Roof Area	9,000 4,500 1,500
	Wall Area	6,000 3,000 900
	aty.	
	Zone / Area Ser ved Qty. /	Autobody Maintenance Shop Maintenance Garage
	Unit Designation	FT-1 Furnace Furnace

Zone Scheduk

. efficients of Heat Transfer are estimated by age, condition and construction of the building.

weather bins to be used in the deltaTxhour calculation. See note 3. s are over a years period and the result is converted to millions of BTUs. The hours are nd proposed schedu of Heat TransferxAn d by the bin analy we and roofs are The deltaTxhou Areas of floors,

Areas of floors, walls, windows and roofs are estimated from drawings and onsite inspection

VENTILATION CONTROLS

OB: NMCC	NG: Shops	DATE: 3/27/2009	
JOB: NI	BUILDING: SP	DATE: 3/:	

ANNUAL ENERGY SAVINGS UNITS SAVED	MECHANICAL KWH Saved 0	MECHANICAL KW Saved 0	DRE oil heater (61)
ANNUAL ENEL	MECHANICA	MECHANIC	MMBtu Saved BEFORE oil heater

ECM OPERATIONAL Savings \$\$\$ \$0.00

								ш	Equipment Schedu	Schedule								,		
																		Gas or		
			Fan		Fan	Existing	Proposed	A/C	A/C			Proposed		Proposed	Fuel		ē	Propane		KWH
					kW			(Y or N or		% Eff.	Occupied	Occupied	Occupied		~	MMBtu/Yr/u		_	Usage/ L	Usage/Y
Unit Designation	Jnit Designation Zone / Area Served Qty. (N or E) HP/ Unit Reading	oty.	(N or E)	HP/ Unit		CFM OA/Unit (CFM OA/Unit	ш	Peak kW	ERVs	Begin	End	Temp	Hrs/Yr	(O or P)	nit	MMBtu/Yr	MMBtu/Yr		-
																	61	•		0
HRU-1	Autobody	-	ш	0.00	0.00	1,000	2,000	z	0.00	50%	6:00	16:00	68.0	1,700	0	61	61	0	0	0
HRU-2	Maintenance Shop	-	ш	0.50	0.31	450	450	z	0.00	50%	6:00	16:00	70.0		0	0	0	0	0	0
Furnace	Maintenance Garage	-	ш	0.50	0.31	150	150	z	0.00	%0	6:00	16:00	61.0		0	0	0	0	0	0

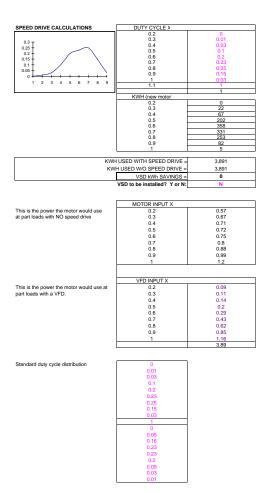
6. Cooling COP is assumed to be 1.

. We are the new proposed schedules. They are based on a 34 week school heating cycle per year. We are the in data has been used to calculate delta Tyhours. The formula to determine delta Tyhour calculation is the weather bins to be used in the delta Tyhour. The formula to determine fractions of the weather bins to be used in the delta Tyhour. The formula to determine fractions are over a years period and the result is converted to millions. See note 3. There are 133 MF calendar days dring the school year, inclusive of holidays. We then are the assisting and the result is converted to millions of BTUs. A delta is calculated between existing and proposed dm. There are 133 MF calendar days dring the school year, inclusive of holidays. We are the assisting and the fan is greater than 3Hp, kW readings are instantaneous during site visit and are assumed to be representative of the systems operation including post project implementation. If the equipment is existing and the fan is less than 3Hp, kW readings. If the equipment is are over a total are assumed 10% loading and 55% efficiency. If the equipment is new, kW readings are calculated based on an assumed 70% loading and 55% efficiency. If the equipment is new, kW readings are calculated based on an assumed 70% loading and 55% efficiency. If the equipment is existing and the fan is less than 3Hp, kW readings are fifticiency. If the equipment is existing and the fan is less than 3Hp, kW readings are instantaneous during site visit and are assumed to an assumed 70% loading and 55% efficiency.

VENTILATION CONTROLS

JOB: NMCC	VMCC
BUILDING: Shops	Shops
DATE: 3/27/2009	3/27/2009

ANNUAL ENERGY SAVINGS Units Saved	Units Saved	% Run Hour	% Run Hours % Outside Air
MECHANICAL KWH Saved	0	40%	100%
MECHANICAL KW Saved	0	20%	75%
MMBtu Saved BEFORE oil heater	50	20%	50%
		20%	25%
ECM OPERATIONAL Savings \$\$\$	\$0.00	70.0%	Weighted average % Ventilation


					Maiahtad	Equipment Schedule	Schedule						Gas or
					Average		Proposed		Proposed	Fuel		lio	Propane
Unit Designation	Zone / Area Served	aty.	CFM OA/Unit	% Eff. ERVs	Percent CFM OA	Occupied Begin	Occupied End	Occupied Temp	Hrs/Yr	(O or P)	MMBtu/Yr	MMBtu/Yr 50	MMBtu/Yr 0
												8	>
HRU-1	Autobody	-	2,000	50%	20%	6:00	16:00	68.0	1,700	0	36	36	0
HRU-2	Maintenance Shop	-	450	50%	20%	6:00	16:00	70.0	1,700	0	6	б	0
Furnace	Maintenance Garage	-	150	%0	%02	6:00	16:00	61.0	1,700	0	4	4	0
Notes:													

Ventilation run hours are based on the new proposed schedules. They are based on a 34 week school heating cycle per year.
 Weather bin data has been used to calculate deltaTxhours. The formula to determine deltaTxhours uses the proposed schedules to determine fractions of the weather bins to be used in the deltaTxhour

calculation. See note 3.
3. The deltaTxhours generated by the bin analysis is used in the following formula to determine MMBTU/yr. %OAxCFMx1.08xdeltaTxhours=BTU. The hours are over a years period and the result is converted to millions of BTUs.

ENERGY EFFICIENT MOTOR & VSD SAVINGS CALCULATIONS

JOB	NMCC	
BUILDING		
DATE	03/27/09	
ANN	UAL ENERGY SAVINGS	Units Saved
M	ECHANICAL KWH Saved	(3,502)
	ECHANICAL KW Saved	(4.1)
		(4.1)
ECM OPE	RATIONAL Savings \$\$\$	
MOTOR CALCULATIONS	LOCATION	Garage EF
NOTOR CALCULATIONS	MOTOR EXISTING CONDITION	Garage EF
	EOPT TYPE	Pump
	EQPT#	EF-1
	H.P.	1.00
	ACT.H.P.	?
	RATED AMPS.	?
	AMPS 1	?
	AMPS 2	?
	KW	
	KVAR	~ ?
	KVA	
	VOLTS	230
		2.50
ASSUMPTIONS	0.746	
1. kW was measured for one pump and	Existing	Pump 0.00
applied to the others.	Bun Hours	5.712
Only one pump runs at a time.	Load Factor	0.84
	Motor Eff	0.92
	kWh	
	KW	0.
	Proposed	
	HP	1.0
	Run Hours	5,712
	Load Factor	0.84
	Motor Eff.	0.920
	kWh	3,89
	KŴ	0.
	Motor kWh Saved	(3891)
Monthly kw X six months = annual kw	Monthly Motor KW saved	(0.7)
	Annual kw saved	(4.1)

OIL HEATER SAVINGS CALCULATIONS

JOB:	NMCC
BUILDING:	Shops
DATE:	3/27/2009

ANNUAL ENERGY SAVINGS	Units Saved
MECHANICAL KWH Saved	(494)
MECHANICAL KW Saved	
GALLONS OIL SAVED WITH oil heater	372
ECM OPERATIONAL Savings \$\$\$	

Location:	Shops
Boiler:	Primary
Base Gallons consumed	7,857
Total gallons saved BEFORE heater	425
Net base gallons	7,433
Oil heater savings=5% of net gals	5.0%
Gallons Saved	372
kWh to Heat Oil @ 70 watt/gal	494